1. Modeling effects of common molecular contaminants on the Euclid infrared detectors
- Author
-
Gennadiy N. Lotkin, Remi Barbier, Anne Ealet, Roger Foltz, Analia N. Cillis, Murzy D. Jhabvala, Laddawan Miko, N. Ferraro, Jason Williams, T. Powers, Hyung Cho, Olivia R. Dawson, Em. Kan, Duncan M. Kahle, Augustyn Waczynski, L. Nguyen, J.-C. Clemens, Michael Hickey, F. Wang, S. McClure, P. Strada, Michael Seiffert, Thierry Maciaszek, Ulf E. Israelsson, Gregory Delo, Emily Kan, T. Hwang, K. Turck, Eric Prieto, Warren Holmes, A. Feizi, C. Weber, Carole Tucker, Chris McKenney, T. Goodsall, S. Pravdo, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), National Space Institute [Lyngby] (DTU Space), Technical University of Denmark [Lyngby] (DTU), University of Copenhagen = Københavns Universitet (KU), Max-Planck-Institut für Extraterrestrische Physik (MPE), Centre National d’Études Spatiales [Paris] (CNES), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), EUClID, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), and University of Copenhagen = Københavns Universitet (UCPH)
- Subjects
010302 applied physics ,Materials science ,Spacecraft ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,02 engineering and technology ,Cryopump ,engineering.material ,021001 nanoscience & nanotechnology ,01 natural sciences ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Optics ,Coating ,13. Climate action ,0103 physical sciences ,engineering ,Quantum efficiency ,Area density ,Infrared detector ,0210 nano-technology ,business ,Absorption (electromagnetic radiation) - Abstract
International audience; Cleanliness specifications for infrared detector arrays are usually so stringent that effects are neglibile. However, the specifications determine only the level of particulates and areal density of molecular layer on the surface, but the chemical composition of these contaminants are not specified. Here, we use a model to assess the impact on system quantum efficiency from possible contaminants that could accidentally transfer or cryopump to the detector during instrument or spacecraft testing and on orbit operation. Contaminant layers thin enough to meet typical specifications, < 0.5μgram/cm2, have a negligible effect on the net quantum efficiency of the detector, provided that the contaminant does not react with the detector surface, Performance impacts from these contaminant plating onto the surface become important for thicknesses 5 - 50μgram/cm2. Importantly, detectable change in the "ripple" of the anti reflection coating occurs at these coverages and can enhance the system quantum efficiency. This is a factor 10 less coverage for which loss from molecular absorption lines is important. Thus, should contamination be suspected during instrument test or flight, detailed modelling of the layer on the detector and response to very well known calibrations sources would be useful to determine the impact on detector performance
- Published
- 2016