1. Flexible Organic Electronic Ion Pump Fabricated Using Inkjet Printing and Microfabrication for Precision In Vitro Delivery of Bupivacaine
- Author
-
Dennis Cherian, Arghyamalya Roy, Alex Bersellini Farinotti, Tobias Abrahamsson, Theresia Arbring Sjöström, Klas Tybrandt, David Nilsson, Magnus Berggren, Camilla I. Svensson, David J. Poxson, and Daniel T. Simon
- Subjects
polyelectrolytes ,Biomaterials ,inkjet printing ,flexible devices ,Materials Chemistry ,Biomedical Engineering ,Materialkemi ,Pharmaceutical Science ,bioelectronics ,polyimide - Abstract
The organic electronic ion pump (OEIP) is an on-demand electrophoretic drug delivery device, that via electronic to ionic signal conversion enables drug delivery without additional pressure or volume changes. The fundamental component of OEIPs is their polyelectrolyte membranes which are shaped into ionic channels that conduct and deliver ionic drugs, with high spatiotemporal resolution. The patterning of these membranes is essential in OEIP devices and is typically achieved using laborious micro processing techniques. Here, we report the development of an inkjet printable formulation of polyelectrolyte, based on a custom anionically functionalized hyperbranched polyglycerol (i-AHPG). This polyelectrolyte ink greatly simplifies the fabrication process, and is used in the production of free standing, OEIPs on flexible polyimide substrates. Both i-AHPG and the OEIP devices are characterized, exhibiting favorable iontronic characteristics of charge selectivity and ability to transport aromatic compounds. Further, the applicability of these technologies is demonstrated by transport and delivery of the pharmaceutical compound bupivacaine to dorsal root ganglion cells with high spatial precision and effective nerve-blocking, highlighting the applicability of these technologies for biomedical scenarios. Funding: Swedish Foundation for Strategic Research; Knut and Alice Wallenberg Foundation; Swedish Research Council; European Research Council [834677]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]; Vinnova
- Published
- 2023
- Full Text
- View/download PDF