1. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review.
- Author
-
Costa, Monique Melo, Corbel, Vincent, Ben Hamouda, Refka, and Almeras, Lionel
- Subjects
SCIENTIFIC literature ,MOSQUITO-borne diseases ,MORPHOLOGY ,ARTHROPOD vectors ,VECTOR-borne diseases ,MOSQUITO control - Abstract
Simple Summary: The deadliest animal in the world is, by far, the mosquito, which spreads numerous viral and parasitic infectious diseases. To control mosquito populations and improve surveillance and personal protective measures, the establishment of rapid, simple, and economic strategies to characterize mosquito fauna and its specific life traits is essential for effective vector management. The present study synthesizes existing evidence on the application of an innovative approach—matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) profiling/biotyping—for the identification of mosquitoes and the analysis of certain life traits, such as vector species, blood-feeding sources, pathogenic agents within the mosquito, and its susceptibility to insecticides. The reliability, low cost, and high-throughput capacity make the MALDI-TOF MS profiling a valuable tool for monitoring and controlling mosquito-borne diseases. These findings, based on this innovative approach, have important implications for public health stakeholders in improving mosquito identification, surveillance, and management of vector-borne diseases. Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF