1. A two-level Markov random field for road network extraction and its application with optical, SAR, and multitemporal data.
- Author
-
Perciano, T., Tupin, F., Hirata Jr., R., and Cesar Jr., R. M.
- Subjects
- *
SYNTHETIC aperture radar , *REMOTE sensing , *MARKOV random fields , *MARKOV processes , *MULTISENSOR data fusion - Abstract
This article introduces a method for road network extraction from satellite images. The proposed approach covers a new fusion method (using data from multiple sources) and a new Markov random field (MRF) defined on connected components along with a multilevel application (two-level MRF). Our method allows the detection of roads with different characteristics and decreases by around 30% the size of the used graph model. Results for synthetic aperture radar (SAR) images and optical images obtained using the TerraSAR-X and Quickbird sensors, respectively, are presented demonstrating the improvement brought by the proposed approach. In a second part, an analysis of different types of data fusion combining optical/radar images, radar/radar images, and multitemporal SAR (TerraSAR-X and COSMO-SkyMed) images is described. The qualitative and quantitative results show that the fusion approach improves considerably the results of the road network extraction. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF