1. Probing the weak limit of magnetocrystalline anisotropy through a spin‒flop transition in the van der Waals antiferromagnet CrPS4.
- Author
-
Seo, Jae Yeon, Lim, Sunghyun, Shin, Hyun Jun, Jeong, Ki Won, Hong, Jae Min, Moon, Kyungsun, Kim, Mi Kyung, Lee, Nara, and Choi, Young Jai
- Subjects
EXCHANGE interactions (Magnetism) ,MAGNETIC torque ,MAGNETIC anisotropy ,MAGNETIC fields ,MAGNETIC properties - Abstract
The influence of magnetocrystalline anisotropy (MCA) on antiferromagnetism is elucidated through the characterization of the spin‒flop transition. However, due to a lack of suitable candidates for investigation, a detailed understanding of the preservation of the spin‒flop transition in the presence of low MCA energy remains elusive. In this study, we introduce CrPS
4 , which is a two-dimensional van der Waals antiferromagnet, as an ideal system to explore the exceedingly weak limit of the thermally-evolved MCA energy. By employing a uniaxially anisotropic spin model and fitting it to the experimental magnetic properties, we quantify the MCA energy and identify the discernible spin configurations in different magnetic phases. Notably, even at the limit of extremely weak MCA, with a mere 0.12% of the interlayer antiferromagnetic exchange interaction at T = 33 K, which is slightly below the Néel temperature (TN ) of 38 K, the spin‒flop transition remains intact. We further establish a direct correlation between the visualized spin arrangements and the progressive reversal of magnetic torque induced by rotating magnetic fields. This analysis reveals the essential role of MCA in antiferromagnetism, thus extending our understanding to previously undetected limits and providing valuable insights for the development of spin-processing functionalities based on van der Waals magnets. Though the impact of magnetic anisotropy on antiferromagnetism is manifested in spin-flop transition, understanding the preservation of this transition in weak anisotropy remains elusive. By adopting an anisotropic spin model, we find that the spin-flop transition remains intact in extremely weak anisotropy, with a mere 0.12% of interlayer exchange interaction at 33 K, slightly below the Néel temperature of 38 K. We further establish a direct relationship between the visualized spin arrangements and the progressive reversal of magnetic torque in rotating magnetic fields. Our analysis provides valuable insights for exploring novel phenomena in the realm of low-dimensional magnetism. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF