1. Ultrafast all-optical toggle writing of magnetic bits without relying on heat.
- Author
-
Zalewski, T., Maziewski, A., Kimel, A. V., and Stupakiewicz, A.
- Subjects
ULTRASHORT laser pulses ,MAGNETIC anisotropy ,ULTRA-short pulsed lasers ,MAGNETIZATION reversal ,MAGNETIC control ,MAGNETIC fields - Abstract
Ultrafast excitation of matter can violate Curie's principle that the symmetry of the cause must be found in the symmetry of the effect. For instance, heating alone cannot result in a deterministic reversal of magnetization. However, if the heating is ultrafast, it facilitates toggle switching of magnetization between stable bit-states without any magnetic field. Here we show that the regime of ultrafast toggle switching can be also realized via a mechanism without relying on heat. Ultrafast laser excitation of iron-garnet with linearly polarized light modifies magnetic anisotropy and thus causes toggling magnetization between two stable bit states. This new regime of 'cold' toggle switching can be observed in ferrimagnets without a compensation point and over an exceptionally broad temperature range. The control of magnetic anisotropy required for the toggle switching exhibits reduced dissipation compared to laser-induced-heating mechanism, however the dissipation and the switching-time are shown to be competing parameters. Toggle switching refers to the switching of magnetization induced by a train of ultrashort laser pulses. The high speed make such switching in extremely promising for devices, however, the underlying toggle switching mechanism in metals is due to heating, and thus has a downside of dissipation. Here, Zalewski et al demonstrate ultrafast 'cold' toggle switching, with a mechanism that does not rely on heating in dielectric Cobalt doped Yittrium Iron Garnet. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF