1. Magnesium(II)-ATP Complexes in 1-Ethyl-3-Methylimidazolium Acetate Solutions Characterized by 31 Mg β-Radiation-Detected NMR Spectroscopy.
- Author
-
McFadden RML, Szunyogh D, Bravo-Frank N, Chatzichristos A, Dehn MH, Fujimoto D, Jancsó A, Johannsen S, Kálomista I, Karner VL, Kiefl RF, Larsen FH, Lassen J, Levy CDP, Li R, McKenzie I, McPhee H, Morris GD, Pearson MR, Sauer SPA, Sigel RKO, Thulstrup PW, MacFarlane WA, Hemmingsen L, and Stachura M
- Subjects
- Imidazoles, Magnetic Resonance Spectroscopy methods, Adenosine Triphosphate chemistry, Magnesium
- Abstract
The complexation of Mg
II with adenosine 5'-triphosphate (ATP) is omnipresent in biochemical energy conversion, but is difficult to interrogate directly. Here we use the spin- 1 / 2 β-emitter31 Mg to study MgII -ATP complexation in 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) solutions using β-radiation-detected nuclear magnetic resonance (β-NMR). We demonstrate that (nuclear) spin-polarized31 Mg, following ion-implantation from an accelerator beamline into EMIM-Ac, binds to ATP within its radioactive lifetime before depolarizing. The evolution of the spectra with solute concentration indicates that the implanted31 Mg initially bind to the solvent acetate anions, whereafter they undergo dynamic exchange and form either a mono- (31 Mg-ATP) or di-nuclear (31 MgMg-ATP) complex. The chemical shift of31 Mg-ATP is observed up-field of31 MgMg-ATP, in accord with quantum chemical calculations. These observations constitute a crucial advance towards using β-NMR to probe chemistry and biochemistry in solution., (© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF