1. C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and β-arrestin recruitment.
- Author
-
Croker DE, Halai R, Kaeslin G, Wende E, Fehlhaber B, Klos A, Monk PN, and Cooper MA
- Subjects
- Arrestins genetics, Cell Line, Cells, Cultured, Gene Expression, Granulocyte Colony-Stimulating Factor biosynthesis, Humans, Macrophages immunology, Protein Binding, Protein Multimerization, Receptor, Anaphylatoxin C5a chemistry, Receptor, Anaphylatoxin C5a genetics, Receptors, Chemokine chemistry, Receptors, Chemokine genetics, beta-Arrestin 2, beta-Arrestins, Arrestins metabolism, MAP Kinase Signaling System, Macrophages metabolism, Receptor, Anaphylatoxin C5a metabolism, Receptors, Chemokine metabolism
- Abstract
The complement system is a major component of our innate immune system, in which the complement proteins C5a and C5a-des Arg bind to two G-protein-coupled receptors: namely, the C5a receptor (C5a1) and C5a receptor like-2 receptor (C5a2, formerly called C5L2). Recently, it has been demonstrated that C5a, but not C5a-des Arg, upregulates heteromer formation between C5a1 and C5a2, leading to an increase in IL-10 release from human monocyte-derived macrophages (HMDMs). A bioluminescence resonance energy transfer (BRET) assay was used to assess the recruitment of β-arrestins by C5a and C5a-des Arg at the C5a1 and C5a2 receptors. C5a demonstrated elevated β-arrestin 2 recruitment levels in comparison with C5a-des Arg, whereas no significant difference was observed at C5a2. A constitutive complex that formed between β-arrestin 2 and C5a2 accounted for half of the BRET signal observed. Interestingly, both C5a and C5a-des Arg exhibited higher potency for β-arrestin 2 recruitment via C5a2, indicating preference for C5a2 over C5a1. When C5a was tested in a functional ERK1/2 assay in HMDMs, inhibition of ERK1/2 was observed only at concentrations at or above the EC50 for heteromer formation. This suggested that increased recruitment of the β-arrestin-C5a2 complex at these C5a concentrations might have an inhibitory role on C5a1 signaling through ERK1/2. An improved understanding of C5a2 modulation of signaling in acute inflammation could be of benefit in the development of ligands for conditions such as sepsis.
- Published
- 2014
- Full Text
- View/download PDF