4 results on '"Zha, Hainie"'
Search Results
2. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning.
- Author
-
Zha, Hainie, Miao, Yuxin, Wang, Tiantian, Li, Yue, Zhang, Jing, Sun, Weichao, Feng, Zhengqi, and Kusnierek, Krzysztof
- Subjects
- *
MACHINE learning , *STANDARD deviations , *ARTIFICIAL neural networks , *SPECTRAL reflectance , *RICE - Abstract
Optimizing nitrogen (N) management in rice is crucial for China's food security and sustainable agricultural development. Nondestructive crop growth monitoring based on remote sensing technologies can accurately assess crop N status, which may be used to guide the in-season site-specific N recommendations. The fixed-wing unmanned aerial vehicle (UAV)-based remote sensing is a low-cost, easy-to-operate technology for collecting spectral reflectance imagery, an important data source for precision N management. The relationships between many vegetation indices (VIs) derived from spectral reflectance data and crop parameters are known to be nonlinear. As a result, nonlinear machine learning methods have the potential to improve the estimation accuracy. The objective of this study was to evaluate five different approaches for estimating rice (Oryza sativa L.) aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at stem elongation (SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise multiple linear regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5) artificial neural networks (ANN) regression. The results indicated that machine learning methods improved the NNI estimation compared to VI-SLR and SMLR methods. The RF algorithm performed the best for estimating NNI (R2 = 0.94 (SE) and 0.96 (HD) for calibration and 0.61 (SE) and 0.79 (HD) for validation). The root mean square errors (RMSEs) were 0.09, and the relative errors were <10% in all the models. It is concluded that the RF machine learning regression can significantly improve the estimation of rice N status using UAV remote sensing. The application machine learning methods offers a new opportunity to better use remote sensing data for monitoring crop growth conditions and guiding precision crop management. More studies are needed to further improve these machine learning-based models by combining both remote sensing data and other related soil, weather, and management information for applications in precision N and crop management. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. In-season dynamic diagnosis of maize nitrogen status across the growing season by integrating proximal sensing and crop growth modeling.
- Author
-
Dong, Lingwei, Miao, Yuxin, Wang, Xinbing, Kusnierek, Krzysztof, Zha, Hainie, Pan, Min, and Batchelor, William D.
- Subjects
- *
MACHINE learning , *CROP growth , *GROWING season , *DATA integration , *MULTISENSOR data fusion - Abstract
[Display omitted] • Proximal sensing was integrated with crop growth model for dynamic estimation of maize N status. • The CERES-Maize model simulated AGB well, but not PNC. • The estimated NNI using the integrating method resulted in good diagnostic result. • The integrated strategy has good potential for dynamic in-season N management decision support. Efficient and accurate in-season diagnosis of crop nitrogen (N) status is crucially important for precision N management. The main objective of this study was to develop a strategy for in-season dynamic diagnosis of maize (Zea mays L.) N status across the growing season by integrating proximal sensing and crop growth modeling. In this study, we integrated plant N concentration (PNC) derived from leaf fluorescence sensor data and aboveground biomass (AGB) based on the best-performing spectral index calculated from active canopy reflectance sensor data with simulated PNC and AGB using a crop growth model, DSSAT-CERES-Maize, for dynamic in-season maize N status diagnosis across the growing season. The results confirmed the applicability of leaf fluorescence sensing for PNC estimation and active canopy reflectance sensing for AGB estimation, respectively. The calibrated DSSAT CERES-Maize model performed well for simulating AGB (R2 = 0.96), which could be used for calculating the N status indicator, N nutrition index (NNI). However, the model did not perform satisfactorily for PNC simulation, with significant discrepancies between the simulated and measured PNC values. The data integration method using both proximal sensing and crop growth modeling produced accurate predictions of NNI (R2 = 0.95) and N status diagnostic outcomes (Kappa statistics = 0.64) for key growth stages in this study and could be used to simulate maize N status across the growing season, showing the potential for in-season dynamic N status diagnosis and management decision support. More studies are needed to further improve this approach by multi-sensor and multi-source data fusion using machine learning models. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn.
- Author
-
Wang, Xinbing, Miao, Yuxin, Dong, Rui, Zha, Hainie, Xia, Tingting, Chen, Zhichao, Kusnierek, Krzysztof, Mi, Guohua, Sun, Hong, and Li, Minzan
- Subjects
- *
WHEAT yields , *CORN yields , *RICE quality , *CROP management , *CORN , *STANDARD deviations , *GRAIN yields , *DIAGNOSIS - Abstract
• Corn NNI was accurately predicted using proximal sensor and ancillary data with machine learning methods. • Corn yield was accurately predicted by combining sensor data and ancillary data. • An innovative RFR model-based in-season N management strategy was developed. • Sensor data should be used together with soil, weather and management information. Reliable and efficient in-season nitrogen (N) status diagnosis and recommendation methods are crucially important for the success of crop precision N management (PNM). The accuracy of these methods has been found to be influenced by soil properties, weather conditions, and crop management practices. It is important to effectively incorporate these variables to improve in-season N management. Machine learning (ML) methods are promising due to their capability of processing different types of data and modeling both linear and non-linear relationships. The objectives of this study were to (1) determine the potential improvement of in-season prediction of corn N nutrition index (NNI) and grain yield by combining soil, weather and management data with active sensor data using random forest regression (RFR) as compared with Lasso linear regression (LR) using similar data and simple regression (SR) models only using crop sensor data; and (2) to develop a new in-season side-dress N fertilizer recommendation strategy at eighth to ninth leaf stage (V8-V9) of corn developement using the RFR model. Twelve site-year experiments examining corn N rates and planting densities were conducted in Northeast China. The GreenSeeker sensor data and corn NNI were collected at V8-V9 stage, and grain yield was determined at the harvest stage (R6). The soil information was obtained at planting and the weather data was measured throughout the growing season. The results indicated that corn NNI and grain yield were better predicted by combining soil, weather and management information with GreenSeeker sensor data using RFR model (R2 = 0.86 and 0.79) and LR model (R2 = 0.85 and 0.76) as compared with only using GreenSeeker sensor data (R2 = 0.66 and 0.62–63) based on the test dataset. An innovative in-season side-dress N recommendation strategy was developed using the RFR grain yield prediction model to simulate corn grain yield responses to a series of side-dress N rates at V8-V9 stage. Based on these response curves, site-, and year-specific optimum side-dress N rates can be determined. The scenario analysis results indicated that this RFR model-based in-season N recommendation strategy could recommend side-dress N rates similar to those based on measured agronomic optimum N rate (AONR) or economic optimum N rate (EONR), with root mean square error (RMSE) of 17 kg ha−1 and relative error (RE) of 14–15 %. It is concluded that combining soil, weather and management information with crop sensor data using RFR can significantly improve both in-season corn NNI and grain yield prediction and N management, compared with the approach based only on crop sensor data. More studies are needed to further improve and evaluate this approach under diverse on-farm conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.