1. Location-Independent Doppler Sensing System for Device-Free Daily Living Activity Recognition
- Author
-
Shinya Misaki, Makoto Yoshida, Hyuckjin Choi, Tomokazu Matsui, Manato Fujimoto, and Keiichi Yasumoto
- Subjects
Activity recognition ,Doppler sensor ,machine learning ,smart home applications ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
The recent advancements in sensing technology have opened up the possibilities for various services that support daily life, such as energy-saving home appliance control. To realize such services, accurate and cost-effective daily living activity recognition in a wide range is essential. To actualize such a system, it is imperative to address the following requirements: the acquisition of sensors entails very high costs (Issue 1), it is hard to achieve precise recognition for location-independent activities like reading a book (Issue 2), a burden of wearing devices from the perspective of residents (Issue 3), and the preservation of residents’ privacy is compromised by using image data from the camera (Issue 4). In this paper, we propose a method for recognizing daily living activities utilizing Doppler sensors in a relatively longer detection range than other motion detection sensors that can be used for dynamic objects. We assess the proposed system by optimizing recognition accuracy, evaluating ensemble methods, and examining sensor reduction’s impact. In the first assessment, the logistic regression achieved the highest accuracy of 65.99% in the leave-one-person-out cross-validation. The second assessment revealed an accuracy of 59.39% for the parallel activity recognition method and 57.24% for the joint recognition method of location and activity. In the third assessment, logistic regression achieved a recognition accuracy of 65.26% when four sensor nodes were used: two sensors were placed on both sides of a participant, another was diagonally behind the participant, and the other was installed on the ceiling.
- Published
- 2023
- Full Text
- View/download PDF