1. Acquired resistance to KRAS G12C small-molecule inhibitors via genetic/nongenetic mechanisms in lung cancer.
- Author
-
Mohanty A, Nam A, Srivastava S, Jones J, Lomenick B, Singhal SS, Guo L, Cho H, Li A, Behal A, Mirzapoiazova T, Massarelli E, Koczywas M, Arvanitis LD, Walser T, Villaflor V, Hamilton S, Mambetsariev I, Sattler M, Nasser MW, Jain M, Batra SK, Soldi R, Sharma S, Fakih M, Mohanty SK, Mainan A, Wu X, Chen Y, He Y, Chou TF, Roy S, Orban J, Kulkarni P, and Salgia R
- Subjects
- Humans, Antiviral Agents, beta Catenin genetics, Mutation, Proto-Oncogene Proteins p21(ras) genetics, Carcinoma, Non-Small-Cell Lung drug therapy, Carcinoma, Non-Small-Cell Lung genetics, Lung Neoplasms drug therapy, Lung Neoplasms genetics, Drug Resistance, Neoplasm genetics
- Abstract
Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin β4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/β-catenin signaling pathway. Thus, silencing both ITGB4 and β-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and β-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.
- Published
- 2023
- Full Text
- View/download PDF