1. Pharmacology and intracellular signaling mechanisms of the native human orphan receptor BRS-3 in lung cancer cells.
- Author
-
Ryan RR, Weber HC, Mantey SA, Hou W, Hilburger ME, Pradhan TK, Coy DH, and Jensen RT
- Subjects
- 3T3 Cells, Animals, Bombesin metabolism, Calcium metabolism, Cell Division, Cyclic AMP biosynthesis, DNA biosynthesis, Humans, Mice, Phosphatidylinositols metabolism, Receptors, Bombesin analysis, Reverse Transcriptase Polymerase Chain Reaction, Lung Neoplasms metabolism, Receptors, Bombesin metabolism
- Abstract
Neither the native ligand nor the cell biology of the bombesin (Bn)-related orphan receptor subtype 3 (BRS-3) is known. In this study, we used RT-PCR to identify two human lung cancer lines that contain sufficient numbers of native hBRS-3 to allow study: NCI-N417 and NCI-H720. In both cell lines, [DPhe6,betaAla11,Phe13, Nle14]Bn(6-14) stimulates [3H]inositol phosphate. In NCI-N417 cells, binding of 125I-[DTyr6,betaAla11,Phe13,Nle14]Bn(6-14) was saturable and high-affinity. [DPhe6,betaAla11,Phe13,Nle14]Bn(6-14) stimulated phospholipase D activity and a concentration-dependent release of [3H]inositol phosphate (EC50 = 25 nM) and intracellular calcium (EC50 = 14 nM); the increases in intracellular calcium were primarily from intracellular stores. hBRS-3 activation was not coupled to changes in adenylate cyclase activity, [3H]-thymidine incorporation or cell proliferation. No naturally occurring Bn-related peptides bound or activated the hBRS-3 with high affinity. Four different bombesin receptor antagonists inhibited increases in [3H]inositol phosphate. Using cytosensor microphysiometry, we found that [DPhe6,betaAla11,Phe13, Nle14]Bn(6-14) caused concentration-dependent acidification. The results show that native hBRS-3 receptors couple to phospholipases C and D but not to adenylate cyclase and that they stimulate mobilization of intracellular calcium and increase metabolism but not growth. The discovery of human cell lines with native, functional BRS-3 receptors, of new leads for a more hBRS-3-specific antagonist and of the validity of microphysiometry as an assay has yielded important tools that can be used for the identification of a native ligand for hBRS-3 and for the characterization of BRS-3-mediated biological responses.
- Published
- 1998