1. The Amino-Terminal Oligomerization Domain of Angiopoietin-2 Affects Vascular Remodeling, Mammary Gland Tumor Growth, and Lung Metastasis in Mice.
- Author
-
Kapiainen E, Kihlström MK, Pietilä R, Kaakinen M, Ronkainen VP, Tu H, Heikkinen A, Devarajan R, Miinalainen I, Laitakari A, Ansarizadeh M, Zhang Q, Wei GH, Ruddock L, Pihlajaniemi T, Elamaa H, and Eklund L
- Subjects
- Angiopoietin-1, Angiopoietin-2 genetics, Angiopoietins, Animals, Mice, Neovascularization, Pathologic genetics, Vascular Remodeling, Lung Neoplasms genetics, Melanoma
- Abstract
Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2
443 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer. Here, we use a knock-in mouse line (mice expressing Angpt2443 ), a genetic model for breast cancer and metastasis (MMTV- PyMT ), a syngeneic melanoma lung colonization model (B16F10), and orthotopic injection of E0771 breast cancer cells to show that alternative forms increase the diversity of Angpt2 function. In a mouse retina model of angiogenesis, expression of Angpt2443 caused impaired venous development, suggesting enhanced function as a competitive antagonist for Tie2. In mammary gland tumor models, Angpt2443 differentially affected primary tumor growth and vascularization; these varying effects were associated with Angpt2 protein localization in the endothelium or in the stromal extracellular matrix as well as the frequency of Tie2-positive tumor blood vessels. In the presence of metastatic cells, Angpt2443 promoted destabilization of pulmonary vasculature and lung metastasis. In vitro , ANGPT2443 was susceptible to proteolytical cleavage, resulting in a monomeric ligand (ANGPT2DAP ) that inhibited ANGPT1- or ANGPT4-induced TIE2 activation but did not bind to alternative ANGPT2 receptor α5β1 integrin. Collectively, these data reveal novel roles for the ANGPT2 N-terminal domain in blood vessel remodeling, tumor growth, metastasis, integrin binding, and proteolytic regulation. SIGNIFICANCE: This study identifies the role of the N-terminal oligomerization domain of angiopoietin-2 in vascular remodeling and lung metastasis and provides new insights into mechanisms underlying the versatile functions of angiopoietin-2 in cancer. See related commentary by Kamiyama and Augustin, p. 35 ., (©2020 American Association for Cancer Research.)- Published
- 2021
- Full Text
- View/download PDF