1. Multi-omics with dynamic network biomarker algorithm prefigures organ-specific metastasis of lung adenocarcinoma.
- Author
-
Zhang X, Xiao K, Wen Y, Wu F, Gao G, Chen L, and Zhou C
- Subjects
- Humans, Single-Cell Analysis methods, Neural Networks, Computer, Gene Expression Regulation, Neoplastic, Male, Female, Multiomics, Adenocarcinoma of Lung genetics, Adenocarcinoma of Lung pathology, Adenocarcinoma of Lung secondary, Adenocarcinoma of Lung blood, Biomarkers, Tumor genetics, Biomarkers, Tumor blood, Biomarkers, Tumor metabolism, Algorithms, Lung Neoplasms genetics, Lung Neoplasms pathology, Lung Neoplasms secondary, Lung Neoplasms blood, Neoplasm Metastasis
- Abstract
Efficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism. Furthermore, an integrated neural network model based on the filtered scRNA-seq data is successfully constructed and validated to predict the metastatic state trajectory of cancer cells. Overall, our study provides an insight to locate the pre-metastasis status of lung cancer and primarily examines its clinical application value, contributing to the early detection of lung cancer metastasis in a more feasible and efficacious way., Competing Interests: Competing interests The authors declare no competing interests., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF