1. 2-anilino-4-amino-5-aroylthiazole-type compound AS7128 inhibits lung cancer growth through decreased iASPP and p53 interaction
- Author
-
Chi-Huey Wong, Jau-Min Wong, Rong-Jie Chein, Chia-Jen Wang, Pei-Fang Hung, Ang Yuan, Hsin-Yi Wu, Ting-Jen Cheng, Szu-Hua Pan, Pan-Chyr Yang, Hao-Wei Cheng, Pei-Shan Wu, and Yuan-Ling Hsu
- Subjects
p53 ,0301 basic medicine ,Cancer Research ,Lung Neoplasms ,Cell cycle checkpoint ,Cell Survival ,Antineoplastic Agents ,Chemical library ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,Transactivation ,0302 clinical medicine ,In vivo ,Carcinoma, Non-Small-Cell Lung ,Cell Line, Tumor ,medicine ,Animals ,Humans ,Lung cancer ,Cell Proliferation ,iASPP ,apoptosis ,Intracellular Signaling Peptides and Proteins ,Original Articles ,General Medicine ,Cell cycle ,medicine.disease ,Xenograft Model Antitumor Assays ,In vitro ,Gene Expression Regulation, Neoplastic ,Repressor Proteins ,lung cancer ,Thiazoles ,Drug Discovery and Delivery ,030104 developmental biology ,Oncology ,chemistry ,A549 Cells ,Apoptosis ,030220 oncology & carcinogenesis ,Cancer research ,Original Article ,cell cycle ,Tumor Suppressor Protein p53 ,Protein Binding - Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Thus, developing novel therapeutic agents has become critical for lung cancer treatment. In this study, compound AS7128 was selected from a 2-million entry chemical library screening and identified as a candidate drug against non-small cell lung cancer in vitro and in vivo. Further investigation indicated that AS7128 could induce cell apoptosis and cell cycle arrest, especially in the mitosis stage. In addition, we also found that iASPP, an oncogenic protein that functionally inhibits p53, might be associated with AS7128 through mass identification. Further exploration indicated that AS7128 treatment could restore the transactivation ability of p53 and, thus, increase the expressions of its downstream target genes, which are related to cell cycle arrest and apoptosis. This occurs through disruption of the interactions between p53 and iASPP in cells. Taken together, AS7128 could bind to iASPP, disrupt the interaction between iASPP and p53, and result in cell cycle arrest and apoptosis. These findings may provide new insight for using iASPP as a therapeutic target for non-small cell lung cancer treatment.
- Published
- 2018
- Full Text
- View/download PDF