1. A blood and bronchoalveolar lavage protein signature of rapid FEV 1 decline in smoking-associated COPD.
- Author
-
DiLillo KM, Norman KC, Freeman CM, Christenson SA, Alexis NE, Anderson WH, Barjaktarevic IZ, Barr RG, Comellas AP, Bleecker ER, Boucher RC, Couper DJ, Criner GJ, Doerschuk CM, Wells JM, Han MK, Hoffman EA, Hansel NN, Hastie AT, Kaner RJ, Krishnan JA, Labaki WW, Martinez FJ, Meyers DA, O'Neal WK, Ortega VE, Paine R 3rd, Peters SP, Woodruff PG, Cooper CB, Bowler RP, Curtis JL, and Arnold KB
- Subjects
- Humans, Disease Progression, Smoking adverse effects, Forced Expiratory Volume, Bronchoalveolar Lavage, Biomarkers, Lung, Pulmonary Disease, Chronic Obstructive
- Abstract
Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV
1 ) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF