1. Changes in innervation of lumbar motoneurons and organization of premotor network following training of transected adult rats.
- Author
-
Khalki L, Sadlaoud K, Lerond J, Coq JO, Brezun JM, Vinay L, Coulon P, and Bras H
- Subjects
- Animals, Female, Glycine metabolism, Hindlimb physiology, Interneurons pathology, Locomotion physiology, Muscle, Skeletal innervation, Muscle, Skeletal pathology, Presynaptic Terminals pathology, Rabies virus, Rats, Rats, Wistar, Recovery of Function, Serotonin Receptor Agonists therapeutic use, Vesicular Glutamate Transport Protein 1 metabolism, gamma-Aminobutyric Acid metabolism, Lumbosacral Region innervation, Motor Neurons pathology, Nerve Net pathology, Physical Conditioning, Animal, Spinal Cord Injuries physiopathology
- Abstract
Rats with complete spinal cord transection (SCT) can recover hindlimb locomotor function under strategies combining exercise training and 5-HT agonist treatment. This recovery is expected to result from structural and functional re-organization within the spinal cord below the lesion. To begin to understand the nature of this reorganization, we examined synaptic changes to identified gastrocnemius (GS) or tibialis anterior (TA) motoneurons (MNs) in SCT rats after a schedule of early exercise training and delayed 5-HT agonist treatment. In addition, we analyzed changes in distribution and number of lumbar interneurons (INs) presynaptic to GS MNs using retrograde transneuronal transport of rabies virus. In SCT-untrained rats, we found few changes in the density and size of inhibitory and excitatory inputs impinging on cell bodies of TA and GS MNs compared to intact rats, whereas there was a marked trend for a reduction in the number of premotor INs connected to GS MNs. In contrast, after training of SCT rats, a significant increase of the density of GABAergic and glycinergic axon terminals was observed on both GS and TA motoneuronal cell bodies, as well as of presynaptic P-boutons on VGLUT1 afferents. Despite these changes in innervation the number of premotor INs connected to GS MNs was similar to control values although some new connections to MNs were observed. These results suggest that adaptation of gait patterns in SCT-trained rats was accompanied by changes in the innervation of lumbar MNs while the distribution of the spinal premotor circuitry was relatively preserved., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF