1. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure.
- Author
-
Labrecque L, Roy MA, Soleimani Dehnavi S, Taghizadeh M, Smirl JD, and Brassard P
- Subjects
- Humans, Female, Male, Adult, Blood Flow Velocity physiology, Homeostasis physiology, Arterial Pressure physiology, Young Adult, Ultrasonography, Doppler, Transcranial, Blood Pressure physiology, Lower Body Negative Pressure, Cerebrovascular Circulation physiology, Middle Cerebral Artery physiology
- Abstract
A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration. Therefore, examining the cerebral pressure-flow directional sensitivity during an OLBNP-induced cyclic physiological stress is crucial. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to mean arterial pressure (MAP) to compute ratios adjusted for time intervals (ΔMCAv
T /ΔMAPT ) with respect to the minimum-to-maximum MCAv and MAP, for each OLBNP transition (0 to -90 Torr), during 0.05 Hz and 0.10 Hz OLBNP. We then compared averaged ΔMCAvT /ΔMAPT during OLBNP-induced MAP increases (INC) (ΔMCAvT / Δ MAP T INC ) and decreases (DEC) (ΔMCAvT / Δ MAP T DEC ). Nineteen healthy participants [9 females; 30 ± 6 years] were included. There were no differences in ΔMCAvT /ΔMAPT between INC and DEC at 0.05 Hz. ΔMCAvT / Δ MAP T INC (1.06 ± 0.35 vs. 1.33 ± 0.60 cm⋅s-1 /mmHg; p = 0.0076) was lower than ΔMCAvT / Δ MAP T DEC at 0.10 Hz. These results support OLBNP as a model to evaluate the directional sensitivity of the cerebral pressure-flow relationship., Competing Interests: Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.- Published
- 2024
- Full Text
- View/download PDF