The Ras/Erk and NF-κB pathways play critical roles in cell proliferation and are known to drive oncogenesis when overactivated. Herein we report a gatekeeper function of the two pathways by working in synergy to suppress liver tumorigenesis. Hepatocyte-specific deletion of both Shp2/Ptpn11 and Ikkβ in mice, which promote Ras/Erk and NF-κB signaling, respectively, exacerbated chemical carcinogenesis and even triggered spontaneous development of hepatocellular carcinoma (HCC). We show that the unanticipated severe tumor phenotype was contributed collectively by severe cholestasis, metabolic changes, upregulated cell-cycle progression, and disruption of circadian rhythm in mutant hepatocytes. Remarkably, human HCCs with dysregulated circadian gene expression displayed downregulation of Ras/Erk and NF-κB signaling and poor prognosis. Together, these data indicate that at the ground state, the two central pathways, previously known as oncogenic, cooperate to sustain tumor-suppressive physiologic homeostasis and to prevent hepatic damage. Disruption of this intricate signaling network is carcinogenic in the liver., Implications: We demonstrate here that basal levels of the Ras/MAPK and NF-κB pathways, while promoting tumorigenesis if overactivated, are required to maintain physiologic homeostasis and regulate circadian rhythm in the liver, which are antitumorigenic., (©2021 American Association for Cancer Research.)