1. MicroRNA-182 Promotes Lipoprotein Lipase Expression and Atherogenesisby Targeting Histone Deacetylase 9 in Apolipoprotein E-Knockout Mice.
- Author
-
Cheng HP, Gong D, Zhao ZW, He PP, Yu XH, Ye Q, Huang C, Zhang X, Chen LY, Xie W, Zhang M, Li L, Xia XD, Ouyang XP, Tan YL, Wang ZB, Tian GP, Zheng XL, Yin WD, and Tang CK
- Subjects
- Animals, Computational Biology, Cytokines drug effects, HEK293 Cells, Histone Deacetylases, Humans, Inflammation metabolism, Lipid Metabolism drug effects, Macrophages, Mice, Mice, Knockout, ApoE, THP-1 Cells, Atherosclerosis chemically induced, Lipoprotein Lipase drug effects, MicroRNAs pharmacology, Repressor Proteins antagonists & inhibitors
- Abstract
Background: Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and atherogenesis., Methods and results: Using bioinformatics analyses and a dual-luciferase reporter assay, we identified histone deacetylase 9 (HDAC9) as a target gene of miR-182. Moreover, miR-182 upregulated LPL expression by directly targetingHDAC9in THP-1 macrophages. Hematoxylin-eosin (H&E), Oil Red O and Masson's trichrome staining showed that apolipoprotein E (ApoE)-knockout (KO) mice treated with miR-182 exhibited more severe atherosclerotic plaques. Treatment with miR-182 increased CD68 and LPL expression in atherosclerotic lesions in ApoE-KO mice, as indicated by double immunofluorescence staining in the aortic sinus. Increased miR-182-induced increases in LPL expression in ApoE-KO mice was confirmed by real-time quantitative polymerase chain reaction and western blotting analyses. Treatment with miR-182 also increased plasma concentrations of proinflammatory cytokines and lipids in ApoE-KO mice., Conclusions: The results of the present study suggest that miR-182 upregulates LPL expression, promotes lipid accumulation in atherosclerotic lesions, and increases proinflammatory cytokine secretion, likely through targetingHDAC9, leading to an acceleration of atherogenesis in ApoE-KO mice.
- Published
- 2017
- Full Text
- View/download PDF