Antoine Leboucher, Marc-Emmanuel Dumas, Tariq Ganief, Didier F. Pisani, Julien Chilloux, Laura Martinez-Gili, Jérôme A.J. Becker, Ez-Zoubir Amri, Patricia Bermudez-Martin, R. Frank Kooy, Edouard W. Khandjian, Boris Macek, Julie Le Merrer, Laetitia Davidovic, Anke Van Dijck, Davidovic, Laetitia, Institut de pharmacologie moléculaire et cellulaire (IPMC), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Valrose (IBV), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), Nutrition et cerveau (U1213, U855), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), Antwerp University Hospital [Edegem] (UZA), Physiologie de la reproduction et des comportements [Nouzilly] (PRC), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut Français du Cheval et de l'Equitation [Saumur]-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Imperial College London, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Proteome Center Tuebingen, Eberhard Karls Universität Tübingen, Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Centre de recherche de l’Institut universitaire en santé mentale de Québec [Canada] (CERVO), Département de réadaptation (Faculté de médecine de l'Université Laval) [Canada], Faculté de médecine de l'Université Laval [Québec] (ULaval)-Faculté de médecine de l'Université Laval [Québec] (ULaval), Faculté de médecine de l'Université Laval [Québec] (ULaval), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Objectives The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. Methods Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased β-adrenergic-driven lipolysis and lipid utilization. Results Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. Conclusions Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism., Graphical abstract Image 1, Highlights • Loss of the translational regulator FMRP impacts glucose and lipid homeostasis in mouse and human. • FMR1-deficiency modifies blood metabolic markers. • Loss of FMRP enhances the insulin response and lipolysis. • Loss of FMRP exaggerates hepatic protein synthesis. • FMRP controls the translation of key hepatic proteins involved in lipid metabolism.