1. Energy spread tuning of a laser-plasma accelerated electron beam in a magnetic chicane.
- Author
-
Roussel, E, André, T, Andriyash, I, Blache, F, Bouvet, F, Corde, S, Espinos, D Oumbarek, Ghaith, A, Goddet, J-P, Kitegi, C, Kononenko, O, Labat, M, Lambert, G, Lestrade, A, Loulergue, A, Marteau, F, Marcouillé, O, Sebdaoui, M, Tafzi, A, and Tavakoli, K
- Subjects
FREE electron lasers ,RELATIVISTIC electron beams ,ELECTRON beams ,UNDULATOR radiation ,RADIATION trapping ,FOCUS (Optics) ,LIGHT sources - Abstract
Laser-plasma accelerators (LPA) deliver relativistic electron beams with high peak current and low emittance, with energies up to the GeV-level in only few centimetres. However, the divergence and the energy spread of these beams remain too large for potential light source applications. A magnetic transfer line can be used to manipulate the electron beam phase-space and select the transmitted energies with a slit located at its center. We will show that with a proper focusing optics along the line, one can tune the energy spread of the beam at a given energy without loss and produce undulator radiation with controlled bandwidth. We present analytic studies, numerical simulations and experimental results on the controled electron beam transport and application to undulator radiation with a control of the bandwidth. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF