1. Understanding host-microbiome-environment interactions: Insights from Daphnia as a model organism.
- Author
-
Akbar S, Gu L, Sun Y, Zhang L, Lyu K, Huang Y, and Yang Z
- Subjects
- Animals, Daphnia, Fresh Water, Genotype, Life History Traits, Microbiota
- Abstract
Microbes perform a variety of vital functions that are essential for healthy ecosystems, ranging from nutrient recycling, antibiotic production and waste decomposition. In many animals, microbes become an integral part by establishing diverse communities collectively termed as "microbiome/s". Microbiomes defend their hosts against pathogens and provide essential nutrients necessary for their growth and reproduction. The microbiome is a polygenic trait that is dependent on host genotype and environmental variables. However, the alteration of microbiomes by stressful condition and their recovery is still poorly understood. Despite rapid growth in host-associated microbiome studies, very little is known about how they can shape ecological processes. Here, we review current knowledge on the microbiome of Daphnia, its role in fitness, alteration by different stressors, and the ecological and evolutionary aspects of host microbiome interactions. We further discuss how variation in Daphnia physiology, life history traits, and microbiome interactive responses to biotic and abiotic factors could impact patterns of microbial diversity in the total environment, which drives ecosystem function in many freshwater environments. Our literature review provides evidence that microbiome is essential for Daphnia growth, reproduction and tolerance against stressors. Though the core and flexible microbiome of Daphnia is still debatable, it is clear that the Daphnia microbiome is highly dependent on interactions among host genotype, diet and the environment. Different environmental factors alter the microbiome composition and diversity of Daphnia and reduce their fitness. These interactions could have important implications in shaping microbial patterns and their recycling as Daphnia are keystone species in freshwater ecosystem. This review provides a framework for studying these complex relationships to gain a better understanding of the ecological and evolutionary roles of the microbiome., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF