1. Leptin signals via TGFB1 to promote metastatic potential and stemness in breast cancer.
- Author
-
Mishra AK, Parish CR, Wong ML, Licinio J, and Blackburn AC
- Subjects
- Apoptosis physiology, Cell Line, Tumor, Cell Proliferation physiology, Epithelial-Mesenchymal Transition physiology, Female, Humans, MCF-7 Cells, Neoplastic Stem Cells metabolism, Neoplastic Stem Cells pathology, Obesity metabolism, Obesity pathology, Signal Transduction physiology, Breast metabolism, Breast physiology, Breast Neoplasms metabolism, Breast Neoplasms pathology, Leptin metabolism, Transforming Growth Factor beta1 metabolism
- Abstract
Epidemiological studies have shown obesity to be linked with poorer outcomes in breast cancer patients. The molecular mechanisms responsible for the increased risk of invasive/metastatic disease with obesity are complex, but may include elevated levels of adipokines such as leptin. Using physiological levels of leptin found in obesity in a novel chronic in vitro treatment model (≤200 ng/ml for 14 days), we confirmed the occurrence of leptin-mediated changes in growth, apoptosis and metastatic behavior, and gene expression changes representing epithelial-to-mesenchymal transition (EMT) and a cancer stem cell (CSC) like phenotype in breast epithelial and cancer cell lines (MCF10A, MCF10AT1, MCF7 and MDA-MB-231). Further, we have discovered that these effects were accompanied by increased expression of TGFB1, and could be significantly reduced by co-treatment with neutralizing antibody against TGFB1, indicating that the induction of these characteristics was mediated via TGFB1. Occurring in both MCF7 and MCF10AT1 cells, it suggests these actions of leptin to be independent of estrogen receptor status. By linking leptin signalling to the established TGFB1 pathway of metastasis / EMT, this study gives a direct mechanism by which leptin can contribute to the poorer outcomes of obese cancer patients. Inhibitors of TGFB1 are in currently in phase III clinical trials in other malignancies, thus identifying the connection between leptin and TGFB1 will open new therapeutic opportunities for improving outcomes for obese breast cancer patients.
- Published
- 2017
- Full Text
- View/download PDF