A semi-empirical mathematical model for the acid-oxygen pressure leaching of Ni–Cu matte is presented, based on data from batch leaching experiments. The primary controlling factor in the leaching process is found to be galvanic inhibition of the more highly oxidized copper and nickel sulfide species by less oxidized species, particularly Ni alloy and Ni3S2. The leaching rate of many species is greatly reduced by the presence of one or both of these phases, and others will not commence leaching until neither is present. The mathematical model is based on first-order chemical reaction controlled rate expressions, as the reactions occurring are electrochemical in nature. Mass transfer effects are included only empirically. Some possibly diffusion-related phenomena are noted, although the model is not extended to incorporate these effects on a fundamental level. The model is verified and extended by the inclusion of several different factors that were tested experimentally. The effects of variations in O2 flow rate and partial pressure, initial particle size, reaction pulp density and initial acid concentration were all studied, and included in the model. Variations in O2 flow rate and partial pressure are found to affect the reaction rates via the dissolved oxygen concentration in the solution phase. [Copyright &y& Elsevier]