1. Several observations about Maneeals - a peculiar system of lines
- Author
-
Jakub Kabat and Naga Vijay Krishna Dasari
- Subjects
Lemoine's Pedal Triangle Theorem ,lcsh:Mathematics ,Maneeal's Points ,General Medicine ,Maneeals ,lcsh:QA1-939 ,Combinatorics ,Integer ,Maneeal's Pedal triangle of order n ,Order (group theory) ,Maneeals triangle of order n ,Cauchy–Schwarz inequality ,Cauchy-Schwarz inequality ,Mathematics - Abstract
For an arbitrary triangle ABC and an integer n we define points Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that $$\matrix{{{{\left| {AC} \right|^n } \over {\left| {AB} \right|^n }} = {{\left| {CD_n } \right|} \over {\left| {BD_n } \right|}},} \hfill & {{{\left| {AB} \right|^n } \over {\left| {BC} \right|^n }} = {{\left| {AE_n } \right|} \over {\left| {CE_n } \right|}},} \hfill & {{{\left| {BC} \right|^n } \over {\left| {AC} \right|^n }} = {{\left| {BF_n } \right|} \over {\left| {AF_n } \right|}}.}} $$ Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this paper we discuss some properties of the Maneeals and related objects.
- Published
- 2016
- Full Text
- View/download PDF