1. Imputación múltiple en grandes datos identificables para la investigación educativa: un ejemplo del sistema brasileño de evaluación educativa
- Author
-
Maria Eugénia Ferrão, Paula Prata, Maria Teresa Gonzaga Alves, uBibliorum, and Fundação para a Ciência e Tecnologia
- Subjects
Prueba Brasil ,Computer science ,Missing data ,Prova Brasil ,Dados omissos ,R ,Imputação múltipla ,Scientific literature ,computer.software_genre ,01 natural sciences ,lcsh:Education (General) ,Education ,010104 statistics & probability ,Prova ,Educational assessment ,0101 mathematics ,Datos omisos ,Imputación múltiple ,computer.programming_language ,05 social sciences ,050301 education ,Multiple imputation ,Data science ,Test (assessment) ,Educational research ,Educação ,lcsh:L7-991 ,Null hypothesis ,0503 education ,computer - Abstract
Almost all quantitative studies in educational assessment, evaluation and educational research are based on incomplete data sets, which have been a problem for years without a single solution. The use of big identifiable data poses new challenges in dealing with missing values. In the first part of this paper, we present the state-of-art of the topic in the Brazilian education scientific literature, and how researchers have dealt with missing data since the turn of the century. Next, we use open access software to analyze real-world data, the 2017 Prova Brasil , for several federation units to document how the naïve assumption of missing completely at random may substantially affect statistical conclusions, researcher interpretations, and subsequent implications for policy and practice. We conclude with straightforward suggestions for any education researcher on applying R routines to conduct the hypotheses test of missing completely at random and, if the null hypothesis is rejected, then how to implement the multiple imputation, which appears to be one of the most appropriate methods for handling missing data., Quase todos os estudos quantitativos em aferição, avaliação e pesquisa educacional são baseados em conjuntos de dados incompletos, que têm sido um problema há anos sem solução única. O uso de grandes dados identificáveis apresenta novos desafios para lidar com valores ausentes. Na primeira parte deste artigo, apresentamos o estado-da-arte do tópico na literatura científica educacional brasileira e como os pesquisadores têm tratado os dados omissos. Em seguida, usamos o software de acesso livre para analisar dados do mundo real, a Prova Brasil 2017, para várias unidades da federação, e documentamos como pressuposto de dados omissos completamente aleatórios pode afetar os resultados estatísticos, as interpretações e implicações subsequentes para políticas e práticas. Concluímos com sugestões diretas para qualquer pesquisador de Educação sobre a aplicação de rotinas R para realizar o teste de hipóteses de dados omissos completamente aleatórios e, se a hipótese nula for rejeitada, como implementar a imputação múltipla, que parece ser um dos métodos mais apropriados para manipular dados ausentes., Casi todos los estudios cuantitativos en evaluación, evaluación e investigación educativa se basan en conjuntos de datos incompletos, que han sido un problema desde hace años sin solución única. El uso de grandes datos identificables presenta nuevos desafíos para manejar los valores ausentes. En la primera parte de este artículo, presentamos el estado del arte del tópico en la literatura científica educativa brasileña y cómo los investigadores han tratado los datos omisos. A continuación, utilizamos el software de acceso libre para analizar datos del mundo real, la Prueba Brasil 2017, para varias unidades de la federación, y documentamos cómo la asunción de datos omisos completamente aleatorios puede afectar los resultados estadísticos, las interpretaciones e implicaciones subsecuentes para políticas y prácticas. Concluimos con sugerencias directas para cualquier investigador de Educación sobre la aplicación de rutinas R para realizar la prueba de hipótesis de datos omisos completamente aleatorios y, si la hipótesis nula es rechazada, cómo implementar la imputación múltiple, que parece ser uno de los métodos más apropiados para manipular datos ausentes., Centro-01-0145-FEDER-000019-C4-Centro de Competências em Cloud Computing and by the Brazilian Coordination for the Improvement of Higher Education Personnel Foundation, through a post-doc fellowship for a research project, which took place at the Faculty of Sciences of the University of Beira Interior, Portugal (Capes-PVE88881.169888/2018-01), and partially supported by the Brazilian National Council for Scientific and Technological Development (CNPq-process 440172 / 2017-9).
- Published
- 2020