6 results on '"Ilya S, Borisov"'
Search Results
2. Physical aspects of digital synthesis and reconstruction of the multiview diffractive images
- Author
-
Sergey A. Kostyukevych, Ilya S. Borisov, and Valeriy I. Grygoruk
- Subjects
Physics ,Spectral power distribution ,business.industry ,Computation ,Computer programming ,Holography ,Stereographic projection ,Grating ,Diffraction efficiency ,law.invention ,law ,Encoding (memory) ,Computer vision ,Artificial intelligence ,business - Abstract
The present research deals with the digital synthesis of the multiview diffractive image elements, or simply the Multiview Diffractive Images (MDIs), also known as stereographic diffractive images or holographic stereograms. These images are designed to be included in Diffractive Op tically Variable Image Devices (DOVIDs) in order to make them more spectacular and visually impressive and to improve their security properties. In the present paper there are considered the computation of parameters for Diffractive Gratings (DGs) composing the MDI topology. The innovative DGs based on the curvilinear strokes are offered. They provide larger diffraction efficiency and better integrity of the scene for any variant of the Lighting and Observation (LO) as well as for the arbitrary parameters of LO geometry. There are described the original approach for computation and estimation of the polychromatic DGs intended to reproduce the complex spectral distribution of the diffracted light. There are proposed the powerful and flexible techniques for Diffractive Images (DIs) enco ding and for uniting different DIs within multichannel one. The distinctions in the modes of the MDI observation, which were escaping anyones attention until now, are discussed. The physical aspects of visu al perception for diffractive images are also concerned. So, the present investigations elucidate the main topics pertinent to the diffractive images synthesis and approach to master the creation of striking ones, particularly the multiview images. Keywords: Diffractive Optically Variable Image Device, Electron-Beam Lithography, Diffractive Image, Multiview Image, Polychromatic Curvilinear Diffractive Grating.
- Published
- 2006
- Full Text
- View/download PDF
3. Stereographic and animated rainbow diffractive images in optical security
- Author
-
Ilya S. Borisov, Valeriy I. Grygoruk, Vladimir I. Girnyk, and Sergey A. Kostyukevych
- Subjects
Diffraction ,business.industry ,Computer science ,Holography ,Stereographic projection ,Context (language use) ,Rainbow ,Stereoscopy ,Grating ,law.invention ,Identification (information) ,law ,Computer graphics (images) ,Computer vision ,Artificial intelligence ,business ,Electron-beam lithography - Abstract
The basic aspects of animated and stereographic rainbow images making technology are considered in this paper. These images are devoted to include in Optical Security Devices (OSDs) in order to increase its structure complexity and to improve its protective properties. They provide on the one hand the simple identification on the visual level of verification and on the other hand the sufficient reliability against counterfeit. The last one is achieved at first by the division of the elemental unit on the regions of any adjusted shape with outline of the precision that is inaccessible for recreation without Electron Beam Lithography Equipment (EBLE), which is used for OSDs recording, and, secondly, by the used encoding methods. In the context of the paper the theoretical discussion of the diffraction on elemental diffractive grating was carried out. The acquired results have been allowed to create the software utility that models the behaviour of the anigram or stereogram. The analysis of examples of the sythetized by the given methodology anigrams shows that there is peculiar for them the effects of the stereoscopic perception. So the investigations on combined methodology of animated stereographic images synthesis were carried out. There were recorded the stereographic, animated and the animated stereographic images as a parts of demonstrational holograms of STC “Optronics”, Ltd.
- Published
- 2004
- Full Text
- View/download PDF
4. Polygram technology in optical security
- Author
-
Ilya S. Borisov, Vladimir I. Girnyk, and Valeriy I. Grygoruk
- Subjects
Basis (linear algebra) ,business.industry ,Computer science ,Holography ,Context (language use) ,Field (computer science) ,law.invention ,law ,Polygram ,Computer vision ,Artificial intelligence ,business ,Quantization (image processing) ,Reliability (statistics) - Abstract
In the context of the paper there are represented the theoretical foundations and technological aspects of creation of the Optical Security Devices by Polygram technology. This technology implies the images of different types combining. There are generally discussed the Computer-Generated Rainbow Holograms (CGRHs) of 3D images. This type of holographic images is distinguished by its reliability against counterfeit, caused by the fact it requires matchless in this field precision of printing system, using extreme for the Electron Beam Lithography Equipment, which is applied for the recording, values of the stamp sizes. On the other hand CGRHs certainly distinguish from similar optical and stereographic images, so they can be easy recognized on the visual level of the verification and don’t need application of any tools. The theoretical basis of the CGRHs creation is strictly presented in this paper. The special attention is paid to the right choice of the non-linear quantization parameters. This paper is mainly concentrated on the investigation of the CGRH combining both with another CGRHs and with the other different images implying by the Polygram technology. The methods of the space restriction of the separate CGRH topology with the information loss and without it are compared. There are carried out the investigations of the influence of the additional images on visual perception of the CGRH.
- Published
- 2004
- Full Text
- View/download PDF
5. Application of computer-generated rainbow holograms of 3D images in optical security devices
- Author
-
Ilya S. Borisov, Alexandr V. Kononov, and Vladimir I. Girnyk
- Subjects
Discretization ,Plane (geometry) ,business.industry ,Quantization (signal processing) ,Holography ,law.invention ,Identification (information) ,Transformation (function) ,law ,Computer vision ,Rectangle ,Artificial intelligence ,business ,Electron-beam lithography ,Mathematics - Abstract
This work deals with Computer-Generated Rainbow Holograms (CGRHs), which can restore the 3D images under white light. They are devoted to include in Diffractive Optically Variable Image Devices (DOVIDs) that are currently widely used for security needs. CGRHs prevent counterfeiting due to the complexity of recreation on the one hand and allow the simple identification at the first (visual) level of verification on the other hand. To record it the Electron Beam Lithography (EBL) is used. The CGRH computation process is conventionally divided on two parts: synthesis and recording. On the synthesis stage, firstly, the geometrical and optical constants of recording scheme are determined, secondly, the basic parameters accounting for discretization of ID in hologram plane are defined and, finally, the calculation of the Interferogram Data (ID) - the array of Bipolar Intensity (BI) values - is carried out. This calculation is performed separately in each independent horizontal slice of object space and hologram plane. On the recording stage a suitable quantization parameters are chosen and transformation of ID into the multilevel rectangle data appropriate for EBL is accomplished. The investigations on optimization of synthesis and recording of the multilevel CGRHs of 3D images integrated in Polygrams are presented here. So the rules for definition of the appropriate discretization parameters were finding out. Advantages of using non-linear quantization that implies condensing of quantization levels near the BI zero were explored. The random deviation of location and direction of elemental hybrid radiating area was applied.
- Published
- 2003
- Full Text
- View/download PDF
6. Multilevel computer-generated holograms for reconstructing 3D images in combined optical-digital security devices
- Author
-
Alexandr V. Kononov, Vladimir I. Girnyk, Ilya S. Borisov, and Sergey A. Kostyukevych
- Subjects
Computer science ,business.industry ,Optical engineering ,Holography ,Photoresist ,Computer-generated holography ,law.invention ,Optics ,law ,Computer graphics (images) ,Monochrome ,Spatial frequency ,business ,Parallax ,Quantization (image processing) ,Electron-beam lithography - Abstract
Computer-generated holograms (CGHs) integrated within combined optical-digital security devices (CO/DSDs) are described in this work. They can restore the monochrome and color 3D images in white light. For their recording the Electron Beam Lithography (EBL) is used. Our investigations on optimization of synthesis and recording of the CO/DSDs with the integrated in it multilevel CGHs of 3D images possessed horizontal parallax only (HPO) are presented here. The CGH fabrication process is mainly composed of two parts: calculating of the interferogram data (ID) and their recording. Calculation of the ID is done as follows: firstly, the geometrical and optical constants of recording scheme and the object surface represented by the elemental self-radiating areas, are determined, secondly, the basic parameters accounting for discretization of ID in hologram plane is defined. The ID values can be derived by calculation of the necessary elemental object areas bipolar intensities sum. Next, over suitable quantization of ID, recording of the rectangle data appropriate for EBL onto glass coated with non-organic photoresist based on As40S40Se20 is performed. We have also investigated reciprocal influence of an optical part of the CO/DSD and a digital one.© (2002) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.