Carole Rossi, Eli Gabriel Avina Bravo, Felipe Augusto Sodré, Vincent Brossa, Christophe Escriba, Jean-Yves Fourniols, Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Équipe Instrumentation embarquée et systèmes de surveillance intelligents (LAAS-S4M), Service Instrumentation Conception Caractérisation (LAAS-I2C), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), and Université Fédérale Toulouse Midi-Pyrénées
International audience; This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average leadtime of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.