1. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition
- Author
-
M. Lafon, Xavier Ribeyre, A. Bose, D. Mangino, Alexis Casner, D.T. Michel, E. Llor Aisa, A. R. Christopherson, Ryan Nora, Riccardo Betti, Christian Stoeckl, J. Peebles, W. Theobald, Arnaud Colaïtis, Vladimir Tikhonchuk, Rui Yan, Mingsheng Wei, Wanli Shang, Farhat Beg, Chuang Ren, W. Seka, Laboratory for lasers energetics - LLE (New-York, USA), University of Rochester [USA], Fusion Science Center [Rochester], Department of Physics and Astronomy [Rochester], Department of Mechanical Engineering [Rochester], Department of modern mechanics (Hefei, Chine), University of Science and Technology of China [Hefei] (USTC), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Lawrence Livermore National Laboratory (LLNL), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of California [San Diego] (UC San Diego), University of California (UC), General Atomics [San Diego], This work was supported by the DOE NNSA under Award Nos. DE-NA0001944, DE-SC0012316 and DE-FC02-04ER54789, the National Science Foundation under No. PHY-1314734, the Laboratory Basic Science Program, the University of Rochester, and the New York State Energy Research and Development Authority., Science Challenge Project of China (No. TZ2016001 and No. TZ2016005)., Part of this work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 633053., European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), and University of California
- Subjects
Physics ,chemistry.chemical_classification ,Laser ablation ,Hydrogen ,Energy conversion efficiency ,Analytical chemistry ,chemistry.chemical_element ,Radiation ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Shock (mechanics) ,law.invention ,Ion ,Ignition system ,chemistry ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Compounds of carbon ,010306 general physics - Abstract
International audience; Experiments were performed with CH, Be, C, and SiO2 ablators interacting with high-intensity UV laser radiation (5 × 1015 W/cm2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ∼13% instantaneous conversion efficiency), while the amount is a factor of ∼2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. The higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presence of light H ions.
- Published
- 2017