1. Novel opto-fluidic drug delivery system for efficient cellular transfection
- Author
-
Majid Layachi, Anthony Treizebré, Laurent Hay, David Gilbert, Jean Pesez, Quentin D’Acremont, Kevin Braeckmans, Quentin Thommen, Emmanuel Courtade, Bio-Micro-Electro-Mechanical Systems - IEMN (BIOMEMS - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Coulomb (L2C), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Universiteit Gent = Ghent University (UGENT), Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 (CANTHER), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), CHU Lille, This work is part of the ERC Consolidator grant NANOBUBBLE (2014). This work has been partially supported by the LABEX CEMPI (ANR-11-LABX- 0007), as well as by the Ministry of Higher Education and Research, Hauts de France council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Region (CPER Photonics for Society P4S)., Renatech Network, ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), European Project: 648124,H2020,ERC-2014-CoG,NANOBUBBLE(2015), Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN], Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM], Laboratoire Charles Coulomb [L2C], Universiteit Gent = Ghent University [UGENT], and Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
- Subjects
Microfluidics ,Biomedical Engineering ,Pharmaceutical Science ,Medicine (miscellaneous) ,Bioengineering ,Applied Microbiology and Biotechnology ,Photoporation ,PORATION ,MEMBRANE DISRUPTION ,Medicine and Health Sciences ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,High-throughput intracellular delivery ,MICROJETS ,LYSIS ,NANOBUBBLES ,Biology and Life Sciences ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,Vapour nanobubbles ,Microfuidics ,Nanoparticle micro-positioning ,SIZE ,GOLD NANOPARTICLES ,CELLS ,Molecular Medicine ,LASER - Abstract
Intracellular drug delivery is at the heart of many diagnosis procedures and a key step in gene therapy. Research has been conducted to bypass cell barriers for controlled intracellular drug release and made consistent progress. However, state-of-the-art techniques based on non-viral carriers or physical methods suffer several drawbacks, including limited delivery yield, low throughput or low viability, which are key parameters in therapeutics, diagnostics and drug delivery. Nevertheless, gold nanoparticle (AuNP) mediated photoporation has stood out as a promising approach to permeabilize cell membranes through laser induced Vapour NanoBubble (VNB) generation, allowing the influx of external cargo molecules into cells. However, its use as a transfection technology for the genetic manipulation of therapeutic cells is hindered by the presence of non-degradable gold nanoparticles. Here, we report a new optofluidic method bringing gold nanoparticles in close proximity to cells for photoporation, while avoiding direct contact with cells by taking advantage of hydrodynamic focusing in a multi-flow device. Cells were successfully photoporated with $$\sim {70}{\%}$$ ∼ 70 % efficiency with no significant reduction in cell viability at a throughput ranging from $$10^3$$ 10 3 to $$10^4~\text {cells}~{\hbox {min}^{-1}}$$ 10 4 cells min - 1 . This optofluidic approach provides prospects of translating photoporation from an R &D setting to clinical use for producing genetically engineered therapeutic cells.
- Published
- 2023
- Full Text
- View/download PDF