9 results on '"Soimakallio, Sampo"'
Search Results
2. Foregone carbon sequestration due to land occupation—the case of agro-bioenergy in Finland
- Author
-
Koponen, Kati and Soimakallio, Sampo
- Published
- 2015
- Full Text
- View/download PDF
3. Attributional life cycle assessment: is a land-use baseline necessary?
- Author
-
Soimakallio, Sampo, Cowie, Annette, Brandão, Miguel, Finnveden, Göran, Ekvall, Tomas, Erlandsson, Martin, Koponen, Kati, and Karlsson, Per-Erik
- Published
- 2015
- Full Text
- View/download PDF
4. Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy
- Author
-
Helin, Tuomas, Holma, Anne, and Soimakallio, Sampo
- Published
- 2014
- Full Text
- View/download PDF
5. Hiilineutraali Suomi 2035:Skenaariot ja vaikutusarviot
- Author
-
Koljonen, Tiina, Aakkula, Jyrki, Honkatukia, Juha, Soimakallio, Sampo, Haakana, Markus, Hirvelä, Hannu, Kilpeläinen, Harri, Kärkkäinen, Leena, Laitila, Juha, Lehtilä, Antti, Lehtonen, Heikki, Maanavilja, Liisa, Ollila, Paula, Siikavirta, Hanne, and Tuomainen, Tarja
- Subjects
carbon sinks ,carbon neutrality ,low emission ,land use ,emission reduction ,strategy ,scenario ,SDG 15 - Life on Land - Abstract
Pääministeri Sanna Marinin hallituksen ohjelmaan 10.12.2019 on kirjattu "Hallitus toimii tavalla, jonka seurauksena Suomi on hiilineutraali vuonna 2035 ja hiilinegatiivinen nopeasti sen jälkeen. Tämä tehdään nopeuttamalla päästövähennystoimia ja vahvistamalla hiilinieluja." Hallitusohjelmassa ei täsmennetä hiilineutraaliuden määritelmää eikä sitä, miten se tulisi saavuttaa. Suomen osalta keskeinen kysymys hiilineutraaliustavoitteeseen liittyen on paitsi tavoitteen aikataulu ja siihen liittyvä kasvihuonekaasujen (KHK) päästövähennyspolku myös maankäytön nettonielujen kehitys vuoteen 2050. Tässä raportissa on esitetty hiilineutraalisuustavoitteen vaikutuksia Suomen KHK-päästöihin ja -poistumiin, energia- ja kansantalouteen sekä keskeisiin ympäristövaikutuksiin ja riskeihin. Laskennalliset ja laadulliset analyysit pohjautuvat helmikuussa 2019 julkaistuihin arvioihin Suomen pitkän aikavälin kokonaispäästökehityksestä (PITKO-hanke) sekä maatalouden ja maankäyttösektorin päästökehityksistä (MALULU-hanke), jotka toteutettiin osana valtioneuvoston vuoden 2018 selvitys- ja tutkimussuunnitelman toimeenpanoa. PITKO- ja MALULU- selvitysten keskeinen tulos oli, että Suomi voisi saavuttaa hiilineutraaliuden 2040-luvulla, joten tulos ei ollut linjassa nykyisen hallitusohjelman ilmastotavoitteen kanssa. Tässä raportissa on esitetty VTT:n koordinoiman PITKO-jatko -hankkeen ja Luken toteuttaman MALUSEPOhankkeen keskeiset tulokset ja skenaariolaskelmien lähtökohdat siltä osin, kun ne ovat muuttuneet verrattuna helmikuussa 2019 valmistuneihin VN-TEAS-raportteihin. PITKOjatko -hanke toteutettiin työ- ja elinkeinoministeriön toimeksiannosta ja sen toteutukseen osallistuivat VTT:n lisäksi Syke ja Merit Economics. MALUSEPO-hanke toteutettiin maa- ja metsätalousministeriön toimeksiannosta.PITKO-hankkeessa kokonaispäästötarkastelut perustuivat vertailuskenaarion (WEM) ja neljän vaihtoehtoisen vähäpäästöskenaarion (Jatkuva kasvu, Säästö, Muutos ja Pysähdys) laskennallisiin ja laadullisiin analyyseihin. PITKO-jatko- ja MALUSEPOhankkeissa tarkastelut rajattiin WEM-, Jatkuva kasvu - ja Säästö-skenaarioiden päivittämiseen siten, että laskelmissa on hyödynnetty uusinta tilastollista ja muuta tietoa. Esimerkiksi LULUCF-sektorin metsänielujen laskennassa Luke on käyttänyt tuoreempaa valtakunnan metsien inventointitietoa (VMI11/12), joka on vuosilta 2013–2017, kun taas MALULU:ssa käytetty inventointitieto oli peräisin vuosilta 2009–2013. Laskelmien mukaan nykyisillä toimilla hiilineutraalisuutta ei saavuteta ennen vuotta 2050 ja silloinkin ainoastaan, jos maankäytön nettonielut ovat noin 30 Mt CO2 ekv. -tasolla. Jatkuva kasvu- ja Säästö-skenaarioissa hiilineutraalisuus sen sijaan saavutetaan vuonna 2035, mutta se edellyttää merkittävää KHK-päästöjenvähentämistä erityisesti jaksolla 2030−2035 sekä lisäksi sitä, että maankäytönnettonielut kehittyisivät laskelmien mukaisesti.
- Published
- 2020
6. Quantifying the climate effects of bioenergy – Choice of reference system.
- Author
-
Koponen, Kati, Soimakallio, Sampo, Kline, Keith L., Cowie, Annette, and Brandão, Miguel
- Subjects
- *
BIOMASS energy equipment , *RENEWABLE energy sources , *ANTHROPOGENIC effects on nature , *GREENHOUSE gases prevention , *ENVIRONMENTAL protection - Abstract
In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presents guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. It can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
7. Land use in life cycle assessment
- Author
-
Mattila, Tuomas, Helin, Tuomas, Antikainen, Riina, Soimakallio, Sampo, Pingoud, Kim, and Wessman, Helena
- Subjects
elinkaarianalyysi ,environmental impact assessment ,life cycle analysis ,environmental impacts ,maankäyttö ,indicators ,yritykset ,ilmastovaikutukset ,companies ,biodiversiteetti ,ympäristövaikutukset ,Land use ,SDG 13 - Climate Action ,SDG 7 - Affordable and Clean Energy ,SDG 12 - Responsible Consumption and Production ,ympäristövaikutusten arviointi ,climate impacts ,indikaattorit ,biodiversity ,SDG 15 - Life on Land - Abstract
As human population is continuously increasing, productive land is becoming even more limited resource for biomass production. Land use and land use change cause various environmental impacts. At the moment the focus is on land use related greenhouse gas emissions, but changes in carbon cycles and storages, soil quality and soil net productivity, and loss of biodiversity are growing in importance. Additionally, changes in land use and land cover also affect water quality and availability. Currently, land use related terminology is diverse, and the methodologies to assess the impacts of land use and land use change are still partly under development. The aim of this study was to discuss how land use induced environmental impacts can be taken into consideration in the life cycle assessment (LCA). This report summarises the results of the FINLCA project’s (Life Cycle Assessment Framework and Tools for Finnish Companies) two tasks (WP 2.1 land use and WP 5.2 biomaterials). The study was conducted in co-operation with the Finnish Environment Institute (SYKE) and VTT Technical Research Centre of Finland. As a result, we show that it is possible to make land use impact assessment with LCA. Indicators are available for climate impacts and for all the other identified land use impact categories (resource depletion, soil quality, and biodiversity). However, limited land use related data reduces the reliability of the results. Most widely used life cycle impact assessment (LCIA) methods (e.g. ReCiPe, CML or EI99) cover only one aspect of land use induced environmental impacts. Additionally, some of the land use indicator results are difficult to understand and communicate. From the company perspective, we considered that accounting of land occupation (m2a) and transformation (m2 from and to) is a good starting point together with the relatively simple ecological footprint indicator for productive land occupation (resource depletion). A more comprehensive and challenging approach to land use impact assessment in LCA is to include all three impact categories and add the SOC/SOM indicator for soil quality impacts and EDP or PDF indicator for biodiversity. In case no quantitative assessment can be done, we propose that companies would map their raw materials’ origins. Even a qualitative assessment related to products’ life cycles would help to identify if there are any potential land use or direct and indirect land use change risks.
- Published
- 2011
8. Attributing land-use change carbon emissions to exported biomass.
- Author
-
Saikku, Laura, Soimakallio, Sampo, and Pingoud, Kim
- Subjects
LAND use ,EMISSIONS (Air pollution) ,ECOLOGICAL impact ,BIOMASS production ,GREENHOUSE gases & the environment ,DEFORESTATION ,CLIMATE change ,PRODUCT life cycle - Abstract
Abstract: In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
9. On the validity of natural regeneration in determination of land-use baseline.
- Author
-
Soimakallio, Sampo, Brandão, Miguel, Ekvall, Tomas, Cowie, Annette, Finnveden, Göran, Erlandsson, Martin, Koponen, Kati, and Karlsson, Per-Erik
- Subjects
LAND use ,BASELINE emissions ,LAND management ,CARBON sequestration ,NATURAL resources - Abstract
The article presents the authors' reply to Matthew Brander's response to their paper on the necessity of a land-use baseline in attributional LCA where he raised concerns on the appropriateness of attributable LCA (ALCA) to support decision-making. They point out that postponement of natural regeneration can be attributed to any land use regardless of the length occupation and whether the temporal scope includes the initial land transformation.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.