1. Efficiency of crustacean zooplankton in transferring allochthonous carbon in a boreal lake.
- Author
-
Grosbois G, Vachon D, Del Giorgio PA, and Rautio M
- Subjects
- Animals, Carbon, Crustacea, Food Chain, Lakes, Zooplankton
- Abstract
Increased incorporation of terrestrial organic matter (t-OM) into consumer biomass (allochthony) is believed to reduce growth capacity. In this study, we examined the relationship between crustacean zooplankton allochthony and production in a boreal lake that displays strong seasonal variability in t-OM inputs. Contrary to our hypotheses, we found no effect of allochthony on production at the community and the species levels. The high-frequency seasonal sampling (time-for-space) allowed for estimating the efficiency of zooplankton in converting this external carbon source to growth. From the daily t-OM inputs in the lake (57-3,027 kg C/d), the zooplankton community transferred 0.2% into biomass (0.01-2.36 kg C/d); this level was of the same magnitude as the carbon transfer efficiency for algal-derived carbon (0.4%). In the context of the boundless carbon cycle, which integrates inland waters as a biologically active component of the terrestrial landscape, the use of the time-for-space approach for the quantifying of t-OM trophic transfer efficiency by zooplankton is a critical step toward a better understanding of the effects of increasing external carbon fluxes on pelagic food webs., (© 2020 The Authors. Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.)
- Published
- 2020
- Full Text
- View/download PDF