1. Toxicoproteomic Profiling of hPXR Transgenic Mice Treated with Rifampicin and Isoniazid.
- Author
-
Brewer CT, Kodali K, Wu J, Shaw TI, Peng J, and Chen T
- Subjects
- Animals, Chemical and Drug Induced Liver Injury etiology, Cytochrome P-450 Enzyme System metabolism, Heme metabolism, Homocysteine metabolism, Iron-Sulfur Proteins metabolism, Liver drug effects, Liver metabolism, Mice, Mice, Inbred C57BL, Niacinamide metabolism, Oxidative Stress, Proteome genetics, Vitamin B 6 metabolism, Antitubercular Agents toxicity, Chemical and Drug Induced Liver Injury metabolism, Isoniazid toxicity, Proteome metabolism, Rifampin toxicity
- Abstract
Tuberculosis is a global health threat that affects millions of people every year, and treatment-limiting toxicity remains a considerable source of treatment failure. Recent reports have characterized the nature of hPXR -mediated hepatotoxicity and the systemic toxicity of antitubercular drugs. The antitubercular drug isoniazid plays a role in such pathologic states as acute intermittent porphyria, anemia, hepatotoxicity, hypercoagulable states (deep vein thrombosis, pulmonary embolism, or ischemic stroke), pellagra (vitamin B
3 deficiency), peripheral neuropathy, and vitamin B6 deficiency. However, the mechanisms by which isoniazid administration leads to these states are unclear. To elucidate the mechanism of rifampicin- and isoniazid-induced liver and systemic injury, we performed tandem mass tag mass spectrometry-based proteomic screening of mPxr- mice treated with combinations of rifampicin and isoniazid. Proteomic profiling analysis suggested that the/ - and hPXR mice treated with combinations of rifampicin and isoniazid. Proteomic profiling analysis suggested that the hPXR liver proteome is affected by antitubercular therapy to disrupt [Fe-S] cluster assembly machinery, [2Fe-2S] cluster-containing proteins, cytochrome P450 enzymes, heme biosynthesis, homocysteine catabolism, oxidative stress responses, vitamin B3 metabolism, and vitamin B6 metabolism. These novel findings provide insight into the etiology of some of these processes and potential targets for subsequent investigations. Data are available via ProteomeXchange with identifier PXD019505., Competing Interests: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.- Published
- 2020
- Full Text
- View/download PDF