1. Efficient enhancement of the visible-light absorption of cyclometalated Ir(III) complexes triplet photosensitizers with Bodipy and applications in photooxidation and triplet-triplet annihilation upconversion.
- Author
-
Sun J, Zhong F, Yi X, and Zhao J
- Subjects
- Molecular Structure, Organometallic Compounds chemical synthesis, Photochemical Processes, Photosensitizing Agents chemical synthesis, Quantum Theory, Spectrophotometry, Ultraviolet, Iridium chemistry, Light, Organometallic Compounds chemistry, Photosensitizing Agents chemistry
- Abstract
We report molecular designing strategies to enhance the effective visible-light absorption of cyclometalated Ir(III) complexes. Cationic cyclometalated Ir(III) complexes were prepared in which boron-dipyrromethene (Bodipy) units were attached to the 2,2'-bipyridine (bpy) ligand via -C≡C- bonds at either the meso-phenyl (Ir-2) or 2 position of the π core of Bodipy (Ir-3). For the first time the effect of π conjugating (Ir-3) or tethering (Ir-2) of a light-harvesting chromophore to the coordination center on the photophysical properties was compared in detail. Ir(ppy)2(bpy) (Ir-1; ppy = 2-phenylpyridine) was used as model complex, which gives the typical weak absorption in visible range (ε < 4790 M(-1) cm(-1) in region > 400 nm). Ir-2 and Ir-3 showed much stronger absorption in the visible range (ε = 71,400 M(-1) cm(-1) at 499 nm and 83,000 M(-1) cm(-1) at 527 nm, respectively). Room-temperature phosphorescence was only observed for Ir-1 (λ(em) = 590 nm) and Ir-3 (λ(em) = 742 nm). Ir-3 gives RT phosphorescence of the Bodipy unit. On the basis of the 77 K emission spectra, nanosecond transient absorption spectra, and spin density analysis, we proposed that Bodipy-localized long-lived triplet excited states were populated for Ir-2 (τT = 23.7 μs) and Ir-3 (87.2 μs). Ir-1 gives a much shorter triplet-state lifetime (0.35 μs). Complexes were used as singlet oxygen ((1)O2) photosensitizers in photooxidation. The (1)O2 quantum yield of Ir-3 (ΦΔ = 0.97) is ca. 2-fold of Ir-2 (ΦΔ = 0.52). Complexes were also used as triplet photosensitizer for TTA upconversion; upconversion quantum yields of 1.2% and 2.8% were observed for Ir-2 and Ir-3, respectively. Our results proved that the strong absorption of visible light of Ir-2 failed to enhance production of a triplet excited state. These results are useful for designing transition metal complexes that show effective strong visible-light absorption and long-lived triplet excited states, which can be used as ideal triplet photosensitizers in photocatalysis and TTA upconversion.
- Published
- 2013
- Full Text
- View/download PDF