1. Isoprenylcysteine Carboxylmethyltransferase-Based Therapy for Hutchinson-Gilford Progeria Syndrome
- Author
-
Nora Khiar-Fernández, Silvia Ortega-Gutiérrez, Nagore I. Marín-Ramos, Pilar Gonzalo, Francisco J. Ortega-Nogales, María L. López-Rodríguez, Ana Gil-Ordóñez, Moisés Balabasquer, Loïc Rolas, Mar Martín-Fontecha, Anna Barkaway, Sussan Nourshargh, Beatriz Marcos-Ramiro, Vicente Andrés, Progeria Research Foundation, Ministerio de Economía, Innovación y Competitividad (España), Fundación La Caixa, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Instituto de Salud Carlos III, Fundación ProCNIC, and Ministerio de Ciencia e Innovación. Centro de Excelencia Severo Ochoa (España)
- Subjects
Premature aging ,Senescence ,DNA damage ,General Chemical Engineering ,LMNA ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,In vivo ,Medicine ,Lonafarnib ,QD1-999 ,030304 developmental biology ,0303 health sciences ,Progeria ,integumentary system ,business.industry ,General Chemistry ,Progerin ,medicine.disease ,3. Good health ,Chemistry ,chemistry ,030220 oncology & carcinogenesis ,Cancer research ,business ,Research Article - Abstract
Hutchinson–Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile. Among them, compound UCM-13207 significantly improved the main hallmarks of progeria. Specifically, treatment of fibroblasts from progeroid mice with UCM-13207 delocalized progerin from the nuclear membrane, diminished its total protein levels, resulting in decreased DNA damage, and increased cellular viability. Importantly, these effects were also observed in patient-derived cells. Using the LmnaG609G/G609G progeroid mouse model, UCM-13207 showed an excellent in vivo efficacy by increasing body weight, enhancing grip strength, extending lifespan by 20%, and decreasing tissue senescence in multiple organs. Furthermore, UCM-13207 treatment led to an improvement of key cardiovascular hallmarks such as reduced progerin levels in aortic and endocardial tissue and increased number of vascular smooth muscle cells (VSMCs). The beneficial effects go well beyond the effects induced by other therapeutic strategies previously reported in the field, thus supporting the use of UCM-13207 as a new treatment for progeria., Isoprenylcysteine carboxylmethyltransferase (ICMT) inhibitor induces progerin delocalization from the nuclear rim and decreases its levels, significantly improving the main hallmarks of progeria.
- Published
- 2021