1. BCAA-nitrogen flux in brown fat controls metabolic health independent of thermogenesis.
- Author
-
Verkerke ARP, Wang D, Yoshida N, Taxin ZH, Shi X, Zheng S, Li Y, Auger C, Oikawa S, Yook JS, Granath-Panelo M, He W, Zhang GF, Matsushita M, Saito M, Gerszten RE, Mills EL, Banks AS, Ishihama Y, White PJ, McGarrah RW, Yoneshiro T, and Kajimura S
- Subjects
- Animals, Mice, Male, Humans, Energy Metabolism, Mice, Inbred C57BL, Oxidative Stress, Insulin metabolism, Diet, High-Fat, Adipocytes, Brown metabolism, Signal Transduction, Thermogenesis, Adipose Tissue, Brown metabolism, Amino Acids, Branched-Chain metabolism, Nitrogen metabolism, Mitochondria metabolism, Insulin Resistance
- Abstract
Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF