1. Robust diffraction-limited NIR-to-NUV wide-field imaging from stratospheric balloon-borne platforms -- SuperBIT science telescope commissioning flight & performance
- Author
-
Romualdez, L. Javier, Benton, Steven J., Brown, Anthony M., Clark, Paul, Damaren, Christopher J., Eifler, Tim, Fraisse, Aurelien A., Galloway, Mathew N., Gill, Ajay, Hartley, John W., Holder, Bradley, Huff, Eric M., Jauzac, Mathilde, Jones, William C., Lagattuta, David, Leung, Jason S. -Y., Li, Lun, Luu, Thuy Vy T., Massey, Richard J., McCleary, Jacqueline, Mullaney, James, Nagy, Johanna M., Netterfield, C. Barth, Redmond, Susan, Rhodes, Jason D., Schmoll, J��rgen, Shaaban, Mohamed M., Sirks, Ellen, and Tam, Sut-Ieng
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
At a fraction the total cost of an equivalent orbital mission, scientific balloon-borne platforms, operating above 99.7% of the Earth's atmosphere, offer attractive, competitive, and effective observational capabilities -- namely space-like resolution, transmission, and backgrounds -- that are well suited for modern astronomy and cosmology. SuperBIT is a diffraction-limited, wide-field, 0.5 m telescope capable of exploiting these observing conditions in order to provide exquisite imaging throughout the near-IR to near-UV. It utilizes a robust active stabilization system that has consistently demonstrated a 1 sigma sky-fixed pointing stability at 48 milliarcseconds over multiple 1 hour observations at float. This is achieved by actively tracking compound pendulations via a three-axis gimballed platform, which provides sky-fixed telescope stability at < 500 milliarcseconds and corrects for field rotation, while employing high-bandwidth tip/tilt optics to remove residual disturbances across the science imaging focal plane. SuperBIT's performance during the 2019 commissioning flight benefited from a customized high-fidelity science-capable telescope designed with exceptional thermo- and opto-mechanical stability as well as tightly constrained static and dynamic coupling between high-rate sensors and telescope optics. At the currently demonstrated level of flight performance, SuperBIT capabilities now surpass the science requirements for a wide variety of experiments in cosmology, astrophysics and stellar dynamics., The following article has been submitted to Review of Scientific Instruments (RSI)
- Published
- 2019
- Full Text
- View/download PDF