1. Argentivorous Molecules with Oxyethylene Chains in Side-Arms: Silver Ion-Induced Selectivity Changes toward Alkali Metal Ions
- Author
-
Hiroki Horita, Shunsuke Kuwahara, Yoichi Habata, Mari Ikeda, Huiyeong Ju, and Megumi Uchiyama
- Subjects
Chemistry ,Ligand ,Electrospray ionization ,Alkali metal ,Ion ,Inorganic Chemistry ,Metal ,Crystallography ,chemistry.chemical_compound ,Cyclen ,visual_art ,visual_art.visual_art_medium ,Molecule ,Physical and Theoretical Chemistry ,Selectivity - Abstract
Argentivorous molecules with mono, di, tri, tetra, and penta-oxyethylene chains in aromatic side-arms were prepared (L1-L5). Titration experiments using proton nuclear magnetic resonance and cold electrospray ionization (cold-spray ionization, CSI) mass spectrometry showed that silver ions were trapped in the cyclen moiety and the arranged oxyethylene chains of the side-arms when two equivalents of silver ions were added. The silver complexes formed by adding one equivalent of silver ion to L2-L5 bind alkali metal ions using the oxyethylene chains; alkali metal ion-induced CSI mass spectral changes of L2-L5 were measured in the absence and presence of silver ions to compare the binding properties of the ligand for Li+, Na+, and K+ ions. As a result, the intensity ratios of [L + H + M]2+/[L + H]+ in L1-L3 were almost zero or very low. L4 and L5, which have tetra(oxyethylene) and penta(oxyethylene) chains, respectively, bind a larger size of alkali metal ions. On the other hand, in the presence of silver ions, the ratio for [L + Ag + M]2+/[L + H]+ (M = Li, Na, K) in L2-L5 was increased. The highest [L + Ag + M]2+/[L + H]+ ratios for K+ were observed in L4 and L5, while selectivity for Na+ was observed in the case of L2 and L3. These results indicate that the increased binding ability and selectivity by L2-L5 are due to the arrangement of oxyethylene chains by the conformational change of the aromatic side-arms. The Ag+-induced carbon-13 nuclear magnetic resonance spectral changes suggested that the second and third oxyethylene units, close to the benzene, are involved in the coordination of the second metal ion.
- Published
- 2021
- Full Text
- View/download PDF