The two Quaternary volcanic fields in the Eifel region of Germany (West Eifel Volcanic Field - WEVF; East Eifel Volcanic Field - EEVF) resemble each other in their temporal, spatial, structural and compositional evolution but also differ significantly in several parameters. Most volcanoes in both fields erupted foiditic potassic (K2O/Na2O >1) lavas with phenocrystic phlogopite and microlitic leucite being mineralogically most diagnostic as are the corresponding major and trace element characteristics. Volcanoes are dominantly scoria cones, of which about half erupted lava flows, and maars, their formation being partly governed by magma-water interaction. Phreatomagmatic eruptive activity reflecting variable degrees of magma/water mixing occurred during the growth of many scoria cones especially during the initial growth stage. Volcanic activity in the WEVF started slowly less than 700 ka ago after the Rhenish shield had begun an accelerated phase of uplift with highly silica-undersaturated foiditic magmas near Ormont at the border with Belgium in the NW and peaked in the central part of the field between ca. 600 and 450 ka. Following a subsequent lull in activity, volcanism migrated to the SE, the frequency of volcano formation increasing during the past <100 ka, the youngest eruption having occurred at 11 ka. Most lavas are mafic with rare intermediate and local small highly evolved centers in the eastern central part of the field. Magma fractionation at high pressure, such as near the crust/mantle boundary, is reflected in common green-core clinopyroxene phenocrysts in many types of lavas - in both fields - and high temperature overprinting, partial melting and metasomatism of lower/middle crustal granulites. Very mafic and much less silica-undersaturated sodic olivine nephelinites and relatively LILE-poor sodic basanites with groundmass plagioclase, both being distinctly less isotopically enriched than the foidites, erupted in the southeastern WEVF during the past <50 ka side-by-side with foidites. Distinct suites of ultramafic xenoliths, each with many variants, are recognized: (1) depleted and enriched peridotites (lherzolites, dunites, harzburgites and wehrlites) comprising several groups (highly deformed porphyroclastic xenoliths in the periphery and high-temperature recrystallized anhydrous types and metasomatized types near the center) and (2) cumulate- textured hornblendites, glimmerites and pyroxenites. The fact that clastic maar deposits are especially rich in peridotite and other ultramafic xenoliths is explained by xenolith-rich mafic volatile-rich magmas rising from greater depth coupled with high expulsion speeds during phreatomagmatic explosions. The near-absence of peridotite xenoliths and the abundance of clinopyroxene-, phlogopite- and amphibole-rich ultramafic cumulates containing remnants of peridotites in maar deposits in the southeastern part of the WEVF is probably due to more efficient filtering and dissolution of mantle peridotite fragments in subcrustal to lower crustal magma reservoirs in which the cumulates formed. Volcanic activity in the EEVF started about 460 ka ago or slightly earlier. As in the WEVF, early activity in the western part of the EEVF is dominated by mafic foiditic lava compositions. A prominent phonolitic complex in its center (Rieden, ca. 430-360 ka) is represented by intrusions, domes, ignimbrites, and widespread fallout tephra. A younger eastern subfield beginning with the partly trachytic highly evolved phonolitic Wehr crater complex at about 215 ka ago was followed soon by the emplacement of potassic basanitic to tephritic scoria cones chiefly in the Neuwied tectonic basin. Volcanism extended east as far as Rhine River and south to close to the Moselle. Most EEVF basanite volcanoes formed ca. 215-190 ka ago.… [ABSTRACT FROM AUTHOR]