1. Assessing the Performance of CO 2 -Mineralized Underground Backfilling Materials through the Variation Characteristics of Infrared Radiation Temperature Index.
- Author
-
Cao, Guanghui, Ma, Liqiang, Osemudiamhen, Arienkhe Endurance, Ngo, Ichhuy, Gao, Qiangqiang, Yu, Kunpeng, and Guo, Zezhou
- Subjects
CARBON dioxide ,FLY ash ,INDUSTRIAL wastes ,INFRARED radiation ,INFRARED imaging ,X-ray diffraction - Abstract
The utilization of CO
2 mineralization fly ash (F) and coal gangue (G) technology is proposed in this research work to prepare underground backfilling materials. The test process can be divided into pre-treatment and post-treatment stages. In the pre-treatment stage, a sealed stirring vessel is used to conduct CO2 wet mineralization. The ratios of F and G were selected as follows: 20%:60% (F2G6), 30%:50% (F3G5), 40%:40% (F4G4), 50%:30% (F5G3), and 60%:20% (F6G2). The ratios were prepared into Φ50 mm × 100 mm cylindrical samples, with curing durations of 3 d, 7 d, 14 d, and 28 d. In the post-processing stage, the SANS microcomputer-controlled electronic universal testing machine and FLIR A615 infrared thermal imager were used to carry out uniaxial loading and temperature detection, respectively. The unconfined compressive strength (UCS), X-ray diffraction (XRD), average infrared radiation temperature (AIRT), variance of original infrared image temperature (VOIIT), and variance of successive minus infrared image temperature (VSMIT) of the samples were compared and analyzed. The results indicated that when curing reaches 14 d, the strength approaches its peak, with minimal changes in strength over a delayed period; furthermore, as the ratio of F to G continues to increase, the mineralization effect gradually strengthens, reaching its optimum level at a ratio of 5:3. However, when the ratio exceeds 5:3, signs of deteriorating mineralization effect start to appear. During the loading process, the AIRT of the mineralized samples showed a continuous increase, but the VOIIT and VSMIT of the mineralized sample both exhibited significant fluctuations or rapid increases during damage rupture. Moreover, the rise in the AIRT value was found to be linked to the increase in the ratio of F to G. This indicates that F has a higher thermal–mechanical conversion efficiency compared to G, so the temperature change will be greater during the loading process. The drastic changes in the VOIIT and VSMIT indicate that they can be used as sensitive response indicators for sample rupture, and can predict and warn of damage rupture in mineralized samples. Research work can provide practical guidance and reference for underground backfilling of CO2 mineralization industrial waste. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF