1. Highly pathogenic avian influenza A(H5N1) virus of clade 2.3.4.4b isolated from a human case in Chile causes fatal disease and transmits between co-housed ferrets.
- Author
-
Pulit-Penaloza JA, Brock N, Belser JA, Sun X, Pappas C, Kieran TJ, Basu Thakur P, Zeng H, Cui D, Frederick J, Fasce R, Tumpey TM, and Maines TR
- Subjects
- Animals, Humans, Chile, Reassortant Viruses genetics, Reassortant Viruses isolation & purification, Reassortant Viruses pathogenicity, Reassortant Viruses classification, Phylogeny, Influenza in Birds virology, Influenza in Birds transmission, Ferrets virology, Influenza, Human virology, Influenza, Human transmission, Orthomyxoviridae Infections virology, Orthomyxoviridae Infections transmission, Orthomyxoviridae Infections veterinary, Influenza A Virus, H5N1 Subtype genetics, Influenza A Virus, H5N1 Subtype pathogenicity, Influenza A Virus, H5N1 Subtype isolation & purification, Influenza A Virus, H5N1 Subtype classification, Influenza A Virus, H5N1 Subtype physiology
- Abstract
Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortant with four gene segments (PB1, PB2, NP, MP) from North American lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.
- Published
- 2024
- Full Text
- View/download PDF