1. RNF31-mediated IKKα ubiquitination aggravates inflammation and intestinal injury through regulating NF-κB activation in human and mouse neonates.
- Author
-
Zhang Y, Tian Y, Zhong X, Zhang R, Yang S, Jin J, Lyu C, Fan J, Shi B, Zhu K, Xiao Y, Lin N, Ma D, Tou J, Shu Q, and Lai D
- Subjects
- Animals, Female, Humans, Infant, Newborn, Male, Mice, Animals, Newborn, Disease Models, Animal, Intestines pathology, Macrophages metabolism, Mice, Inbred C57BL, Enterocolitis, Necrotizing metabolism, Enterocolitis, Necrotizing pathology, I-kappa B Kinase metabolism, Inflammation metabolism, Inflammation pathology, NF-kappa B metabolism, Ubiquitin-Protein Ligases metabolism, Ubiquitin-Protein Ligases genetics, Ubiquitination
- Abstract
Aims: Neonatal necrotizing enterocolitis (NEC) is a leading cause of intestine inflammatory disease, and macrophage is significantly activated during NEC development. Posttranslational modifications (PTMs) of proteins, particularly ubiquitination, play critical roles in immune response. This study aimed to investigate the effects of ubiquitin-modified proteins on macrophage activation and NEC, and discover novel NEC-related inflammatory proteins., Materials and Methods: Proteomic and ubiquitin proteomic analyses of intestinal macrophages in NEC/healthy mouse pups were carried out. In vitro macrophage inflammation model and in vivo NEC mouse model, as well as clinical human samples were used for further verification the inhibitor of nuclear factor-κB kinase α (IKKα) ubiquitination on NEC development through Western blot, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry., Key Findings: We report here that IKKα was a new ubiquitin-modified protein during NEC through ubiquitin proteomics, and RING finger protein 31 (RNF31) acted as an E3 ligase to be involved in IKKα degradation. Inhibition of IKKα ubiquitination and degradation with siRNF31 or proteasome inhibitor decreased nuclear factor-κB (NF-κB) activation, thereby decreasing the expression of pro-inflammatory factors and M1 macrophage polarization, resulting in reliving the severity of NEC., Significance: Our study suggests the activation of RNF31-IKKα-NF-κB axis triggering NEC development and suppressing RNF31-mediated IKKα degradation may be therapeutic strategies to be developed for NEC treatment., Competing Interests: Declaration of competing interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF