1. Metagenomic Analysis of Zinc Surface–Associated Marine Biofilms
- Author
-
Bite Pei, Abdulaziz M. Al-Suwailem, Zenon B. Batang, Pei-Yuan Qian, Ruojun Wang, Nabeel Mannalamkunnath Alikunhi, Weipeng Zhang, Lianguo Chen, and Wei Ding
- Subjects
0301 basic medicine ,Metal ion transport ,Microorganism ,030106 microbiology ,Soil Science ,Biology ,Bacterial Physiological Phenomena ,Biofouling ,03 medical and health sciences ,Microbial ecology ,Botany ,Seawater ,Indian Ocean ,Phylogeny ,Ecology, Evolution, Behavior and Systematics ,Transposase ,Bacteria ,Ecology ,Phylum ,Biofilm ,Biodiversity ,biochemical phenomena, metabolism, and nutrition ,Zinc ,030104 developmental biology ,Metagenomics ,Biofilms - Abstract
Biofilms are a significant source of marine biofouling. Marine biofilm communities are established when microorganisms adhere to immersed surfaces. Despite the microbe-inhibiting effect of zinc surfaces, microbes can still attach to the surface and form biofilms. However, the diversity of biofilm-forming microbes that can attach to zinc surfaces and their common functional features remain elusive. Here, by analyzing 9,000,000 16S rRNA gene amplicon sequences and 270 Gb of metagenomic data, we comprehensively explored the taxa and functions related to biofilm formation in subtidal zones of the Red Sea. A clear difference was observed between the biofilm and adjacent seawater microbial communities in terms of the taxonomic structure at phylum and genus levels, and a huge number of genera were only present in the biofilms. Saturated alpha-diversity curves suggested the existence of more than 14,000 operational taxonomic units in one biofilm sample, which is much higher than previous estimates. Remarkably, the biofilms contained abundant and diverse transposase genes, which were localized along microbial chromosomal segments and co-existed with genes related to metal ion transport and resistance. Genomic analyses of two cyanobacterial strains that were abundant in the biofilms revealed a variety of metal ion transporters and transposases. Our analyses revealed the high diversity of biofilm-forming microbes that can attach to zinc surfaces and the ubiquitous role of transposase genes in microbial adaptation to toxic metal surfaces.
- Published
- 2019