21 results on '"Udisti, R."'
Search Results
2. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea.
- Author
-
Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida, M., Ciardini, V., Colizza, E., Melis, R., Salvatore, M. C., Severi, M., Scarchilli, C., Traversi, R., Udisti, R., and Frezzotti, M.
- Subjects
SEA ice ,INTERGLACIALS ,ICE cores ,POLYNYAS ,ANTARCTIC ice ,SEAS ,MARINE ecology - Abstract
The causes of the recent increase in Antarctic sea ice extent, characterised by large regional contrasts and decadal variations, remain unclear. In the Ross Sea, where such a sea ice increase is reported, 50% of the sea ice is produced within wind-sustained latent-heat polynyas. Combining information from marine diatom records and sea salt sodium and water isotope ice core records, we here document contrasting patterns in sea ice variations between coastal and open sea areas in Western Ross Sea over the current interglacial period. Since about 3600 years before present, an increase in the efficiency of regional latent-heat polynyas resulted in more coastal sea ice, while sea ice extent decreased overall. These past changes coincide with remarkable optima or minima in the abundances of penguins, silverfish and seal remains, confirming the high sensitivity of marine ecosystems to environmental and especially coastal sea ice conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
3. Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core
- Author
-
Castellano, E., Silvia Becagli, Hansson, M., Hutterli, Manuel A., Petit, J. R., Rampino, M. R., Severi, M., Jorgen Peder Steffensen, Rita Traversi, Udisti, R., Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Department of Physical Geography and Quaternary Geology, Stockholm University, Physics Institute, University of Bern, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Earth and Environmental Science Program, New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), European Project for Ice Coring in Antarctica (EPICA), University of Florence (UNIFI), Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
climatic change ,530 Physics ,paleovolcanism ,ice cores ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology - Abstract
International audience; A detailed history of Holocene volcanism was reconstructed using the sulfate record of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. This first complete Holocene volcanic record from an Antarctic core provides a reliable database to compare with long records from Antarctic and Greenland ice cores. A threshold method based on statistical treatment of the lognormal sulfate flux distribution was used to differentiate volcanic sulfate spikes from sulfate background concentrations. Ninety-six eruptions were identified in the EDC96 ice core during the Holocene, with a mean of 7.9 events per millennium. The frequency distribution (events per millennium) showed that the last 2000 years were a period of enhanced volcanic activity. EDC96 volcanic signatures for the last millennium are in good agreement with those recorded in other Antarctic ice cores. For older periods, comparison is in some cases less reliable, mainly because of dating uncertainties. Sulfate depositional fluxes of individual volcanic events vary greatly among the different cores. A volcanic flux normalization (volcanic flux/Tambora flux ratio) was used to evaluate the relative intensity of the same event recorded at different sites in the last millennium. Normalized flux variability for the same event showed the highest value in the 1100-1500 AD period. This pattern could mirror changes in regional transport linked to climatic variations such as slight warming stages in the Southern Hemisphere (Southern Hemisphere Medieval Warming-like period?).
- Published
- 2005
- Full Text
- View/download PDF
4. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core.
- Author
-
Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., and Dreyfus, G.
- Subjects
SNOW ,ICE cores ,DEPTH hoar ,GEOPHYSICS ,DRILL cores - Abstract
An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ
18 Oice , δ18Oatm , total air content, CO2 , CH4 , N2 O, dust, high-resolution chemistry, ice texture) of the bottom 60m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice-bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
5. Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP).
- Author
-
Svensson, A., Bigler, M., Blunier, T., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Fujita, S., Goto-Azuma, K., Johnsen, S. J., Kawamura, K., Kipfstuhl, S., Kohno, M., Parrenin, F., Popp, T., Rasmussen, S. O., Schwander, J., Seierstad, I., Severi, M., Steffensen, J. P., and Udisti, R.
- Subjects
ICE cores ,VOLCANIC eruptions ,OXYGEN isotopes ,GEOMAGNETISM ,PALEOCLIMATOLOGY ,GLOBAL warming - Abstract
The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20 In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM- 19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeoenvironmental records other than ice cores into a precise climatic context. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
6. Volcanic synchronisation between the EPICA Dome C and Vostok ice cores (Antarctica) 0-145 kyr BP.
- Author
-
Parrenin, F., Petit, J.-R., Masson-Delmotte, V., Wolff, E., Basile-Doelsch, I., Jouzel, J., Lipenkov, V., Rasmussen, S. O., Schwander, J., Severi, M., Udisti, R., Veres, D., and Vinther, B. M.
- Subjects
VOLCANOES ,ICE cores ,ELECTRIC conductivity ,CHRONOLOGY ,SULFATES ,VOLCANIC eruptions - Abstract
This study aims at refining the synchronisation between the EPICA Dome C (EDC) and Vostok ice cores in the time interval 0-145 kyr BP by using the volcanic signatures. 102 common volcanic events were identified by using continuous electrical conductivity (ECM), di-electrical profiling (DEP) and sulfate measurements while trying to minimize the distortion of the glaciological chronologies. This is an update and a continuation of previous works performed over the 0-45 kyr interval that provided 56 tie points to the ice core chronologies (Udisti et al., 2004). This synchronisation will serve to establish Antarctic Ice Core Chronology 2012, the next synchronised Antarctic dating. A change of slope in the EDC-depth/Vostok-depth diagram is probably related to a change of accumulation regime as well as to a change of ice thickness upstream of the Lake Vostok, but we did not invoke any significant temporal change of surface accumulation at EDC relative to Vostok. No significant phase difference is detected between the EDC and Vostok isotopic records, but depth shifts between the Vostok 3G and 5G ice cores prevent from looking at this problem accurately. Three possible candidates for the Toba volcanic super-eruption ∼73 kyr ago are suggested in the Vostok and EDC volcanic records. Neither the ECM, DEP nor the sulfate fingerprints for these 3 events are significantly larger than many others in the records. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
7. Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP.
- Author
-
Severi, M., Udisti, R., Becagli, S., Stenni, B., and Traversi, R.
- Subjects
VOLCANOLOGY ,ICE cores ,ESTIMATION theory ,STRATIGRAPHIC geology ,ERROR analysis in mathematics ,EARTH sciences - Abstract
The age scale synchronisation between the Talos Dome and the EPICA Dome C ice cores was carried on through the identification of several common volcanic signatures. This paper describes the rigorous method, using the signature of volcanic sulphate, which was employed for the last 42 kyr of the record. Using this tight stratigraphic link, we transferred the EDC age scale to the Talos Dome ice core, producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modelled TALDICE-1 age scale and the new scale during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2, corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. At this stage our approach does not allow us to unequivocally identify which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 yr appear in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome ice core a new age scale (covering the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010). [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
8. Long-term trends of mono-carboxylic acids in Antarctica: comparison of changes in sources and transport processes at the two EPICA deep drilling sites.
- Author
-
Angelis, M.DE, Traversi, R., and Udisti, R.
- Subjects
ACETATES & the environment ,ICE cores ,CARBOXYLIC acids ,ATMOSPHERIC transport ,CLIMATE change ,LAST Glacial Maximum - Abstract
We present here the first profiles of acetate and formate concentrations in Antarctic ice for time periods that include the great climatic changes of the past. Data are from two Antarctic deep ice cores recovered on the central East Antarctic Plateau (EDC) and in the Dronning Maud Land (EDML) facing the Atlantic Ocean (European EPICA Project). Except the sporadic arrival of diluted continental plumes during glacial extrema, the main source of acetate deposited over the EDC does not seem to have changed significantly over the past 300 kyr and is related to marine biogenic activity. A more detailed study of the past 55 kyr leads to the conclusion that acetate reaching the EDML during a large part of the last glacial maximum was emitted by the Patagonian continental biomass and was uptaken along with nitric acid at the surface of mineral dust. Changes in formate concentrations are characterised by less scattered and lower values at both sites during glacial periods. We propose that the present marine source of formic acid (Legrand et al., 2004) drastically decreased but did not completely vanish under cold climate conditions, whereas the share of methane oxidation in formic acid production became prominent. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
9. The Southern Hemisphere at glacial terminations: insights from the Dome C ice core.
- Author
-
Röthlisberger, R., Mudelsee, M., Bigler, M., de Angelis, M., Fischer, H., Hansson, M., Lambert, F., Masson-Delmotte, V., Sime, L., Udisti, R., and Wolff, E. W.
- Subjects
ICE cores ,GLACIAL climates ,CLIMATOLOGY ,METEOROLOGY - Abstract
The many different proxy records from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core allow for the first time a comparison of nine glacial terminations in great detail. Despite the fact that all terminations cover the transition from a glacial maximum into an interglacial, there are large differences between single terminations. For some terminations, Antarctic temperature increased only moderately, while for others, the amplitude of change at the termination was much larger. For the different terminations, the rate of change in temperature is more similar than the magnitude or duration of change. These temperature changes were accompanied by vast changes in dust and sea salt deposition all over Antarctica. Here we investigate the phasing between a South American dust proxy (non-sea-salt calcium flux, nssCa
2+ ), a sea ice proxy (sea salt sodium flux, ssNa+ ) and a proxy for Antarctic temperature (deuterium, δD). In particular, we look into whether a similar sequence of events applies to all terminations, despite their different characteristics. All proxies are derived from the EPICA Dome C ice core, resulting in a relative dating uncertainty between the proxies of less than 20 years. At the start of the terminations, the temperature (δD) increase and dust (nssCa2+ flux) decrease start synchronously. The sea ice proxy (ssNa+ flux), however, only changes once the temperature has reached a particular threshold, approximately 5°C below present day temperatures (corresponding to a δD value of -420‰). This reflects to a large extent the limited sensitivity of the sea ice proxy during very cold periods with large sea ice extent. At terminations where this threshold is not reached (TVI, TVIII), ssNa+ flux shows no changes. Above this threshold, the sea ice proxy is closely coupled to the Antarctic temperature, and interglacial levels are reached at the same time for both ssNa+ and δD. On the other hand, once another threshold at approximately 2°C below present day temperature is passed (corresponding to a δD value of -402‰), nssCa2+ flux has reached interglacial levels and does not change any more, despite further warming. This threshold behaviour most likely results from a combination of changes to the threshold friction velocity for dust entrainment and to the distribution of surface wind speeds in the dust source region. [ABSTRACT FROM AUTHOR]- Published
- 2008
10. "EDML1": a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years.
- Author
-
Ruth, U., Barnola, J. -M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., and Wolff, E.
- Subjects
ICE cores ,CHRONOLOGY ,GLACIOLOGY ,METHANE - Abstract
A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDMLI is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDMLI was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
11. One-to-one coupling of glacial climate variability in Greenland and Antarctica
- Author
-
George R. Hoffmann, Silvia Becagli, Jean Jouzel, Oleg Rybak, Philippe Huybrechts, M. Kaczmarska, Astrid Lambrecht, Felix Fundel, L. Loulergue, K. Weiler, E. Castellano, Hutterli, Fernando Valero-Delgado, Mika Kohno, Fabrice Lambert, Roberto Udisti, Gunther Lawer, Elisabeth Isaksson, Hubertus Fischer, J. R. Petit, Valter Maggi, J. Beer, Heinrich Miller, Markus Leuenberger, Claude F. Boutron, M.-L. Siggaard-Andersen, Anna Wegner, Torbjörn Karlin, Thomas Blunier, Wolfgang Graf, Ilka Hamann, Patrik R Kaufmann, Margareta Hansson, Andreas Frenzel, J. M. Barnola, H. Oerter, Vania Gaspari, Urs Federer, Hanno Meyer, Sigfus J Johnsen, Robert Mulvaney, Biancamaria Narcisi, Jean-Louis Tison, Jørgen Peder Steffensen, Johannes Oerlemans, Mirko Severi, Eric W. Wolff, Grant M. Raisbeck, Olivier Cattani, U. Ruth, Diedrich Fritzsche, D. Grigoriev, Geneviève C Littot, Paolo Gabrielli, Rita Traversi, Dietmar Wagenbach, Urs Siegenthaler, Regine Röthlisberger, M. R. van den Broeke, D. Dick, Barbara Delmonte, Johannes Freitag, Frank Wilhelms, F. Marino, Jan-Gunnar Winther, Maxime Debret, Renato Spahni, S. Falourd, Jakob Schwander, Barbara Stenni, S. Kipfstuhl, Dieter Lüthi, Jérôme Chappellaz, Dominique Raynaud, Thomas F. Stocker, Dorthe Dahl-Jensen, M. Bigler, Frédéric Parrenin, Carlo Barbante, Rainer Gersonde, Valérie Masson-Delmotte, Amaelle Landais, R. S. W. van de Wal, Jochen Schmitt, Sérgio H. Faria, Institute for the Dynamics of Environmental Processes-CNR, Department of Environmental Sciences, University of Ca’ Foscari [Venice, Italy], Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry, University of Florence (UNIFI), Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern]-Universität Bern [Bern], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), University Milano-Bicocca, Department of Bentho-pelagic processes, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Forschungszentrum fur Umwelt und Gesundheit (GSF), Helmholtz-Zentrum München (HZM), University College of London [London] (UCL), Department of Physical Geography and Quaternary Geology, Stockholm University, British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Departement Geografie, Vrije Universiteit [Brussels] (VUB), Norwegian Polar Institute, Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Institute for Marine and Atmospheric Research [Utrecht] (IMAU), Utrecht University [Utrecht], Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Department of Geological, Environmental and Marine Sciences [Trieste], Università degli studi di Trieste, Département des Sciences de la Terre, Université Libre de Bruxelles [Bruxelles] (ULB), Institute of Environmental Physics [Heidelberg] (IUP), Universität Heidelberg [Heidelberg], Barbante, C., Barnola, J. M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J., Dahl Jensen, D., Debret, M., Delmonte, B., Dick, D., Falourd, S., Faria, S., Federer, U., Fischer, H., Freitag, J., Frenzel, A., Fritzsche, D., Fundel, F., Gabrielli, P., Gaspari, V., Gersonde, R., Graf, W., Grigoriev, D., Hamann, I, Hansson, M., Hoffmann, G., Hutterli, M. A., Huybrechts, P., Isaksson, E., Johnsen, S., Jouzel, J., Kaczmarska, M., Karlin, T., Kaufmann, P., Kipfstuhl, S., Kohno, M., Lambert, F., Lambrecht, A., Landais, A., Lawer, G., Leuenberger, M., Littot, G., Loulergue, L., Lüthi, D., Maggi, V., Marino, F., Masson Delmotte, V., Meyer, H., Miller, H., Mulvaney, R., Narcisi, B., Oerlemans, J., Oerter, H., Parrenin, F., Petit, J. R., Raisbeck, G., Raynaud, D., Röthlisberger, R., Ruth, U., Rybak, O., Severi, M., Schmitt, J., Schwander, J., Siegenthaler, U., Siggaard Andersen, M. L., Spahni, R., Steffensen, J. P., Stenni, Barbara, Stocker, T. F., Tison, J. L., Traversi, R., Udisti, R., Valero Delgado, F., van den Broeke, M. R., van de Wal R. S., W, Wagenbach, D., Wegner, A., Weiler, K., Wilhelms, F., Winther, J. G., Wolff, E., Barbante, C, Barnola, J, Becagli, S, Beer, J, Bigler, M, Boutron, C, Blunier, T, Castellano, E, Cattani, O, Chappellaz, J, Dahl Jensen, D, Debret, M, Delmonte, B, Dick, D, Falourd, S, Faria, S, Federer, U, Fischer, H, Freitag, J, Frenzel, A, Fritzsche, D, Fundel, F, Gabrielli, P, Gaspari, V, Gersonde, R, Graf, W, Grigoriev, D, Hansson, M, Hoffmann, G, Hutterli, M, Huybrechts, P, Isaksson, E, Johnsen, S, Jouzel, J, Kaczmarska, M, Karlin, T, Kaufmann, P, Kipfstuhl, S, Kohno, M, Lambert, F, Lambrecht, A, Landais, A, Lawer, G, Leuenberger, M, Littot, G, Loulergue, L, Luthi, D, Maggi, V, Marino, F, Masson Delmotte, V, Meyer, H, Miller, H, Mulvaney, R, Narcisi, B, Oerlemans, J, Oerter, H, Parrenin, F, Petit, J, Raisbeck, G, Raynaud, D, Rothlisberger, R, Ruth, U, Rybak, O, Severi, M, Schmitt, J, Schwander, J, Siegenthaler, U, Siggaard Andersen, M, Spahni, R, Steffensen, J, Stenni, B, Stocker, T, Tison, J, Traversi, R, Udisti, R, Valero Delgado, F, van den Broeke, M, van de Wal, R, Wagenbach, D, Wegner, A, Weiler, K, Wilhelms, F, Winther, J, Wolff, E, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Swiss Federal Insitute of Aquatic Science and Technology [Dübendorf] (EAWAG), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Vrije Universiteit Brussel (VUB), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université libre de Bruxelles (ULB), University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze = University of Florence (UniFI), Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Helmholtz Zentrum München = German Research Center for Environmental Health, Università degli studi di Trieste = University of Trieste, Universität Heidelberg [Heidelberg] = Heidelberg University, Niels Bohr Institute ( NBI ), Laboratoire de glaciologie et géophysique de l'environnement ( LGGE ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), University of Florence, Swiss Federal Institute of Aquatic Science and Technology ( EAWAG ), Climate and Environmental Physics [Bern], University of Bern, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] ( LSCE ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research ( AWI ), Forschungszentrum fur Umwelt und Gesundheit ( GSF ), Helmholtz-Zentrum München ( HZM ), University College of London [London] ( UCL ), British Antarctic Survey ( BAS ), Natural Environment Research Council ( NERC ), Vrije Universiteit [Brussel] ( VUB ), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] ( ENEA ), Institute for Marine and Atmospheric Research Utrecht ( IMAU ), Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse ( CSNSM ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Geological Environmental and Marine Sciences [Trieste], University of Trieste, Université Libre de Bruxelles [Bruxelles] ( ULB ), and Institute of Environmental Physics [Heidelberg] ( IUP )
- Subjects
Glacial climate ,010504 meteorology & atmospheric sciences ,Meridional overturning circulation ,Greenland ,ice cores ,Atlantic meridional overturning circulation ,ice ,010502 geochemistry & geophysics ,01 natural sciences ,Arctic ,Ice core ,Northern and Southern hemispheres ,methane ,Antarctica ,EPICA ,Dansgaard–Oeschger events ,Dansgaard–Oeschger event ,Ice core studies ,Multidisciplinary ,geography.geographical_feature_category ,European Project for Ice Coring in Antarctica ,article ,Future sea level ,Water waves ,Oceanography ,climate change ,priority journal ,Climate state ,[ SDU.STU.GL ] Sciences of the Universe [physics]/Earth Sciences/Glaciology ,temperature effect ,Ice cap climate ,glacial environment ,oceanic circulation ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,isotope ,climate ,Northern and Southern hemisphere ,0105 earth and related environmental sciences ,geography ,Temperature measurement ,Glacial geology ,climate variation ,Ice-sheet model ,Oxygen ,13. Climate action ,ice core record ,Abrupt climate change ,Environmental science ,Ice sheet ,ice core - Abstract
International audience; Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth's climate dynamics. For the last glacial period, ice core studies1, 2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3, 4, 5 through the Atlantic meridional overturning circulation6, 7, 8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.
- Published
- 2006
- Full Text
- View/download PDF
12. Regional imprints of millennial variability during the MIS 3 period around Antarctica
- Author
-
Buiron, D., Stenni, B., Chappellaz, J., Landais, A., Baumgartner, M., Bonazza, M., Capron, E., Frezzotti, M., Kageyama, M., Lemieux-Dudon, B., Masson-Delmotte, V., Parrenin, F., Schilt, A., Selmo, E., Severi, M., Swingedouw, D., and Udisti, R.
- Subjects
- *
OXYGEN isotopes , *MERIDIONAL overturning circulation , *STABLE isotopes , *GLACIAL climates , *ATMOSPHERIC models - Abstract
Abstract: The climate of the last glacial Marine Isotopic Stage 3 (MIS3) period is characterized by strong millennial-scale variability with a succession of Dansgaard–Oeschger events first identified in Greenland ice cores and associated with variations of the Atlantic Meridional Overturning Circulation (AMOC). These abrupt events have a smooth and lagged counterpart in water stable isotopes from Antarctic ice cores. In this study we aim at depicting and understanding the circum-Antarctic expression of this millennial-scale variability. To illustrate the mechanisms potentially at work in the response of the southern high latitudes to an abrupt decrease of the AMOC, we first present results from experiments performed with the IPSL-CM4 atmosphere-ocean coupled model under glacial boundary conditions. When the AMOC is perturbed by imposing an additional freshwater flux in the North Atlantic, our model produces the classical bipolar seesaw mechanism generally invoked to explain the warming of the Southern Ocean/Antarctic region. However, this mechanism can be locally offset by faster atmospheric teleconnections originating from the tropics, even though the precise location of this fast response is not coherent among different climate models. Our model results are confronted with a synthesis of Antarctic records of ice core stable isotope and sea-salt sodium, including new data obtained on the TALDICE ice core. The IPSL-CM4 produces a dipole-like pattern around Antarctica, with warming in the Atlantic/Indian sectors contrasting with an unexpected cooling in the East-Pacific sector. The latter signal is not detected in our data synthesis. Both ice core data and simulations are consistent in depicting a more rapid response of the Atlantic sector compared to the Indian sector. This feature can be explained by the gradual impact of ocean transport on which faster atmospheric teleconnections are superimposed. Detailed investigations of the sequence of events between different proxies are conducted in three ice cores. Earlier shifts in deuterium excess and significant changes in sea-salt sodium fluxes in the most coastal sites (TALDICE and EDML) compared to EDC suggest reorganizations in local moisture sources, possibly linked with sea-ice cover. This study demonstrates the added value of circum-Antarctic ice core records to characterize the patterns and mechanisms of glacial climate variability. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
13. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica)
- Author
-
Stenni, B., Masson-Delmotte, V., Selmo, E., Oerter, H., Meyer, H., Röthlisberger, R., Jouzel, J., Cattani, O., Falourd, S., Fischer, H., Hoffmann, G., Iacumin, P., Johnsen, S.J., Minster, B., and Udisti, R.
- Subjects
- *
DEUTERIUM , *ICE cores , *STABLE isotopes , *CLIMATE change , *GENERAL circulation model , *TEMPERATURE effect - Abstract
Abstract: New high-resolution deuterium excess (d) data from the two EPICA ice cores drilled in Dronning Maud Land (EDML) and Dome C (EDC) are presented here. The main moisture sources for precipitation at EDC and EDML are located in the Indian Ocean and Atlantic Ocean, respectively. The more southward moisture origin for EDML is reflected in a lower present-day d value, compared to EDC. The EDML and EDC isotopic records (δ18O and d) show the main climate features common to the East Antarctic plateau and similar millennial scale climate variability during the last glacial period. However, quite large δ18O and d differences are observed during MIS5.5 and the glacial inception with a long-term behaviour. A possibility for this long-term difference could be related to uncertainties in past accumulation rate which are used in the glaciological models. Regional climate anomalies between the two sites during MIS5.5 could also be consistent with the observed EDML-EDC δ18O and d gradient anomalies. Simulations performed with the General Circulation Model ECHAM4 for different time slices provide a temporal temperature/isotope slope for the EDML region in fair agreement to the modern spatial slope. T site and T source records are extracted from both ice cores, using a modelling approach, after corrections for past δ18O seawater and elevation changes. A limited impact of d on Antarctic temperature reconstruction at both EDML and EDC has been found with a higher impact only at glacial inception. The AIM (Antarctic Isotope Maximum) events in both ice cores are visible also after the source correction, suggesting that these are real climate features of the glacial period. The different shape of the AIM events between EDC and EDML, as well as some climate features in the early Holocene, points to a slightly different climate evolution at regional scale. A comparison of our temperature reconstruction profiles with the aerosol fluxes show a strong coupling of the nssCa fluxes with Antarctic temperatures during glacial period and a tighter coupling of δ18O and T site with ssNa flux at EDML compared to EDC during the glacial period and MIS5.5. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
14. Ultra-sensitive Flow Injection Analysis (FIA) determination of calcium in ice cores at ppt level
- Author
-
Traversi, R., Becagli, S., Castellano, E., Maggi, V., Morganti, A., Severi, M., and Udisti, R.
- Subjects
- *
ANTARCTIC ice , *HYDROGEN-ion concentration , *CHROMATOGRAPHIC analysis - Abstract
Abstract: A Flow Injection Analysis (FIA) spectrofluorimetric method for calcium determination in ice cores was optimised in order to achieve better analytical performances which would make it suitable for reliable calcium measurements at ppt level. The method here optimised is based on the formation of a fluorescent compound between Ca and Quin-2 in buffered environment. A careful evaluation of operative parameters (reagent concentration, buffer composition and concentration, pH), influence of interfering species possibly present in real samples and potential favourable effect of surfactant addition was carried out. The obtained detection limit is around 15ppt, which is one order of magnitude lower than the most sensitive Flow Analysis method for Ca determination currently available in literature and reproducibility is better than 4% for Ca concentrations of 0.2ppb. The method was validated through measurements performed in parallel with Ion Chromatography on 200 samples from an alpine ice core (Lys Glacier) revealing an excellent fit between the two chemical series. Calcium stratigraphy in Lys ice core was discussed in terms of seasonal pattern and occurrence of Saharan dust events. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
15. Volcanic eruption frequency over the last 45 ky as recorded in Epica-Dome C ice core (East Antarctica) and its relationship with climatic changes
- Author
-
Castellano, E., Becagli, S., Jouzel, J., Migliori, A., Severi, M., Steffensen, J.P., Traversi, R., and Udisti, R.
- Subjects
- *
CLIMATE change , *STANDARD deviations , *CLIMATOLOGY , *DISTRIBUTION (Probability theory) - Abstract
The sulphate glacio-chemical profiles constitute a reliable proxy marker for reconstruction of past volcanic history, assuming a reliable method to distinguish sulphate spikes and to evaluate the flux of individual events is set up. The resulting volcanic event profile is used to reconstruct past event frequencies, and to investigate possible links between volcanism and climatic changes. Volcanic event signatures are useful also in comparing time scales from ice cores drilled at different locations. In this paper, a new method to pick out volcanic signals is proposed. It improves on methods based on the calculation of a threshold using a general mean value plus a multiple of the standard deviation by adding: (1) quantification of nonvolcanic sulphate contributions; (2) sulphate fluxes, instead of concentrations, accounting for accumulation rate changes; (3) data treatment using a log-normal statistic, instead of a Gaussian-type distribution, to take into account the real sulphate distribution; (4) a smoothed curve (weighted fitting) to better understand the residual variability of the sulphate background.This method is used to detect volcanic events throughout the 45 ky time span of the EDC96 ice core, drilled at Dome C on the East Antarctic plateau. A total of 283 volcanic signatures are recovered, with a mean of 6.3 events per millennium. The temporal event frequencies indicate that the last 2000 years were probably characterized by the highest volcanic activity in the period covered by the core and that there is no clear link between number of events recorded and climatic changes. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
16. A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica)
- Author
-
Stenni, B., Jouzel, J., Masson-Delmotte, V., Röthlisberger, R., Castellano, E., Cattani, O., Falourd, S., Johnsen, S.J., Longinelli, A., Sachs, J.P., Selmo, E., Souchez, R., Steffensen, J.P., and Udisti, R.
- Subjects
- *
DEUTERIUM , *HYDROGEN isotopes , *ANTARCTIC ice - Abstract
The timing and synchronisation of Greenland and Antarctic climate events that occurred during the last glacial period are still under debate, as is the magnitude of temperature change associated with these events. Here we present detailed records of local and moisture-source temperature changes spanning the period 27–45 kyr BP from water stable isotope measurements (δD and δ18O) in the recently drilled EPICA Dome C ice core, East Antarctic plateau. Using a simple isotopic model, site (ΔTsite) and source (ΔTsource) temperatures are extracted from the initial 50-yr high-resolution isotopic records, taking into account the changes in seawater isotopic composition. The deuterium isotope variability is very similar to the less precise δD record from the Vostok ice core, and the site temperature inversion leads to a temperature profile similar to the classical palaeothermometry method, due to compensations between source and ocean water corrections. The reconstructed ΔTsite and ΔTsource profiles show different trends during the glacial: the former shows a decreasing trend from the warm A1 event (38 kyr BP) toward the Last Glacial Maximum, while the latter shows increasing values from 41 to 28 kyr BP. The low-frequency deuterium excess fluctuations are strongly influenced by obliquity fluctuations, controlling the low- to high-latitude temperature gradients, and show a remarkable similarity with a high-resolution southeast Atlantic sea surface temperature record. A comparison of the temperature profiles (site and source) and temperature gradient (ΔTsource-ΔTsite) with the non-sea-salt calcium and sodium records suggests a secondary influence of atmospheric transport changes on aerosol variations. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
17. Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP
- Author
-
Barbara Stenni, Roberto Udisti, Rita Traversi, Silvia Becagli, Mirko Severi, Severi, M., Udisti, R., Becagli, S., Stenni, Barbara, Traversi, R., and European Geosciences Union
- Subjects
EPICA Dome C ,TALDICE ,sulphate records ,volcanic eruptions ,East Antarctica ,ice cores ,synchronisation ,Scale (ratio) ,Stratigraphy ,lcsh:Environmental protection ,volcanic eruption ,Dome (geology) ,Paleontology ,Ice core ,lcsh:Environmental pollution ,Stage (stratigraphy) ,lcsh:TD169-171.8 ,Geomorphology ,Holocene ,lcsh:Environmental sciences ,Talos Dome ,lcsh:GE1-350 ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,biology ,Sulphate ,volcanic synchronization ,age scale ,biology.organism_classification ,dome ,error analysis ,ice core ,paleoclimate ,stratigraphy ,sulfate ,synchrony ,uncertainty analysis ,volcanism ,Antarctica ,Volcano ,Talos ,lcsh:TD172-193.5 ,Period (geology) ,sulphate record ,Geology - Abstract
The age scale synchronisation between the Talos Dome and the EPICA Dome C ice cores was carried on through the identification of several common volcanic signatures. This paper describes the rigorous method, using the signature of volcanic sulphate, which was employed for the last 42 kyr of the record. Using this tight stratigraphic link, we transferred the EDC age scale to the Talos Dome ice core, producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modelled TALDICE-1 age scale and the new scale during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2, corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. At this stage our approach does not allow us to unequivocally identify which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 yr appear in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome ice core a new age scale (covering the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010).
- Published
- 2012
18. Regional imprints of millennial variability during the MIS 3 period around Antarctica
- Author
-
Didier Swingedouw, Matthias Baumgartner, Valérie Masson-Delmotte, Bénédicte Lemieux-Dudon, Amaelle Landais, Adrian Schilt, Mattia Bonazza, Emilie Capron, Barbara Stenni, Mirko Severi, Frédéric Parrenin, Massimo Frezzotti, Roberto Udisti, Masa Kageyama, D. Buiron, Jérôme Chappellaz, Enricomaria Selmo, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Geologiche [Trieste], Università degli studi di Trieste, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), University of Bern, Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Modélisation du climat (CLIM), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern]-Universität Bern [Bern], University of Parma = Università degli studi di Parma [Parme, Italie], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Buiron, D., Stenni, Barbara, J., Chappellaz, A., Landai, M., Baumgartner, Bonazza, Mattia, E., Capron, M., Frezzotti, M., Kageyama, B., Lemieux Dudon, V., Masson Delmotte, F., Parrenin, A., Schilt, E., Selmo, M., Severi, D., Swingedouw, R., Udisti, Stenni, B., Chappellaz, J., Landais, A., Baumgartner, M., Bonazza, M., Capron, E., Frezzotti, M., Kageyama, M., Lemieux-Dudon, B., Masson-Delmotte, V., Parrenin, F., Schilt, A., Selmo, E., Severi, M., Swingedouw, D., Udisti, R., Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Trieste = University of Trieste, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Università degli studi di Parma = University of Parma (UNIPR), and Università degli Studi di Firenze = University of Florence (UniFI)
- Subjects
Archeology ,010504 meteorology & atmospheric sciences ,Paleoclimate ,Global coupled model simulation ,Greenland Ice Sheet ,atmosphere-ocean coupling ,Greenland ,ice cores ,010502 geochemistry & geophysics ,Oceanography ,01 natural sciences ,Arctic ,Ice core ,Millennial-scale variability ,Ice age ,stable isotope ,Cryosphere ,Climate change ,Glacial period ,Dansgaard-Oeschger cycle ,Indian Sector ,Global coupled model ,sodium ,deuterium ,Talos Dome ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Global and Planetary Change ,geography.geographical_feature_category ,teleconnection ,Last Glacial ,regional climate ,Geology ,Climatology ,warming ,millennial-scale variability ,glacial period ,global coupled model simulations ,overturn ,Paleoclimatology ,freshwater input ,paleoclimate ,Paleoclimates ,Southern Ocean ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,geography ,Ice ,marine isotope stage ,East Antarctica ,Arctic ice pack ,Glacial geology ,climate variation ,Ice-sheet model ,13. Climate action ,paleoceanography ,coastal zone ,meridional circulation ,Antarctica ,Ice sheet ,ice core - Abstract
International audience; The climate of the last glacial Marine Isotopic Stage 3 (MIS3) period is characterized by strong millennial-scale variability with a succession of Dansgaard–Oeschger events first identified in Greenland ice cores and associated with variations of the Atlantic Meridional Overturning Circulation (AMOC). These abrupt events have a smooth and lagged counterpart in water stable isotopes from Antarctic ice cores. In this study we aim at depicting and understanding the circum-Antarctic expression of this millennial-scale variability. To illustrate the mechanisms potentially at work in the response of the southern high latitudes to an abrupt decrease of the AMOC, we first present results from experiments performed with the IPSL-CM4 atmosphere-ocean coupled model under glacial boundary conditions. When the AMOC is perturbed by imposing an additional freshwater flux in the North Atlantic, our model produces the classical bipolar seesaw mechanism generally invoked to explain the warming of the Southern Ocean/Antarctic region. However, this mechanism can be locally offset by faster atmospheric teleconnections originating from the tropics, even though the precise location of this fast response is not coherent among different climate models. Our model results are confronted with a synthesis of Antarctic records of ice core stable isotope and sea-salt sodium, including new data obtained on the TALDICE ice core. The IPSL-CM4 produces a dipole-like pattern around Antarctica, with warming in the Atlantic/Indian sectors contrasting with an unexpected cooling in the East-Pacific sector. The latter signal is not detected in our data synthesis. Both ice core data and simulations are consistent in depicting a more rapid response of the Atlantic sector compared to the Indian sector. This feature can be explained by the gradual impact of ocean transport on which faster atmospheric teleconnections are superimposed. Detailed investigations of the sequence of events between different proxies are conducted in three ice cores. Earlier shifts in deuterium excess and significant changes in sea-salt sodium fluxes in the most coastal sites (TALDICE and EDML) compared to EDC suggest reorganizations in local moisture sources, possibly linked with sea-ice cover. This study demonstrates the added value of circum-Antarctic ice core records to characterize the patterns and mechanisms of glacial climate variability.
- Published
- 2012
- Full Text
- View/download PDF
19. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica)
- Author
-
S. Falourd, E. Selmo, Paola Iacumin, Sigfus J Johnsen, Barbara Stenni, Jean Jouzel, Olivier Cattani, Bénédicte Minster, Valérie Masson-Delmotte, Hubertus Fischer, Regine Röthlisberger, Hanno Meyer, Hans Oerter, Roberto Udisti, George R. Hoffmann, Stenni, Barbara, Masson Delmotte, V., Selmo, E., Oerter, H., Meyer, H., Röthlisberger, R., Jouzel, J., Cattani, O., Falourd, S., Fischer, H., Hoffmann, G., Iacumin, P., Johnsen, S. J., Minster, B., Udisti, R., Department of Geological, Environmental and Marine Sciences [Trieste], Università degli studi di Trieste = University of Trieste, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Oeschger Centre for Climate Change Research (OCCR), University of Bern, Università degli studi di Trieste, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
Archeology ,010504 meteorology & atmospheric sciences ,δ18O ,ice cores ,site temperature ,010502 geochemistry & geophysics ,01 natural sciences ,Isotopes of oxygen ,deuterium excess ,oxygen isotopes ,source temperature ,East Antarctica ,EPICA ,calcium ,sodium ,EDML ,EDC ,Ice core ,deuterium exce ,oxygen isotope ,Glacial period ,Precipitation ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Ecology, Evolution, Behavior and Systematics ,Holocene ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Global and Planetary Change ,Geology ,Glaciology ,13. Climate action ,Climatology ,Seawater ,ice core - Abstract
New high-resolution deuterium excess (d) data from the two EPICA ice cores drilled in Dronning Maud Land (EDML) and Dome C (EDC) are presented here. The main moisture sources for precipitation at EDC and EDML are located in the Indian Ocean and Atlantic Ocean, respectively. The more southward moisture origin for EDML is reflected in a lower present-day d value, compared to EDC. The EDML and EDC isotopic records (δ18O and d) show the main climate features common to the East Antarctic plateau and similar millennial scale climate variability during the last glacial period. However, quite large δ18O and d differences are observed during MIS5.5 and the glacial inception with a long-term behaviour. A possibility for this long-term difference could be related to uncertainties in past accumulation rate which are used in the glaciological models. Regional climate anomalies between the two sites during MIS5.5 could also be consistent with the observed EDML-EDC δ18O and d gradient anomalies. Simulations performed with the General Circulation Model ECHAM4 for different time slices provide a temporal temperature/isotope slope for the EDML region in fair agreement to the modern spatial slope. Tsite and Tsource records are extracted from both ice cores, using a modelling approach, after corrections for past δ18O seawater and elevation changes. A limited impact of d on Antarctic temperature reconstruction at both EDML and EDC has been found with a higher impact only at glacial inception. The AIM (Antarctic Isotope Maximum) events in both ice cores are visible also after the source correction, suggesting that these are real climate features of the glacial period. The different shape of the AIM events between EDC and EDML, as well as some climate features in the early Holocene, points to a slightly different climate evolution at regional scale. A comparison of our temperature reconstruction profiles with the aerosol fluxes show a strong coupling of the nssCa fluxes with Antarctic temperatures during glacial period and a tighter coupling of δ18O and Tsite with ssNa flux at EDML compared to EDC during the glacial period and MIS5.5.
- Published
- 2010
- Full Text
- View/download PDF
20. Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial-interglacial cycle
- Author
-
Marino, F., Castellano, Emiliano, Ceccato, D., de Deckker, P., Delmonte, Barbara, Ghermandi, G., Maggi, V., Petit, Jean-Robert, Revel-Rolland, Marie, Udisti, Roberto, Department of Chemistry, University of Florence (UNIFI), Department of Environmental Sciences, University Milano-Bicocca, Department of Physics, Universita degli Studi di Padova, Research School of Earth Sciences [Canberra] (RSES), Australian National University (ANU), Department of Mechanics and Civil Engineering, Università degli Studi di Modena e Reggio Emilia (UNIMORE), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géodynamique des Chaines Alpines (LGCA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), European Project for Ice Coring in Antarctica (EPICA), Marino, F, Castellano, E, Ceccato, D, De Deckker, P, Delmonte, B, Ghermand, G, Maggi, V, Petit, J, Revel-Rolland, M, Udisti, R, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze = University of Florence (UniFI), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Università degli Studi di Padova = University of Padua (Unipd), Università degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia (UNIMORE), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Dust source ,aeolian dust ,GEO/04 - GEOGRAFIA FISICA E GEOMORFOLOGIA ,major elements ,paleoclimate ,Ice core ,ice cores ,Antarctica ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,ice core ,climatic change ,PIXE ,dust sources ,complex mixtures ,Major element - Abstract
International audience; The major element composition of the insoluble, windborne long-range dust archived in the European Project for Ice Coring in Antarctica Dome C ice core has been determined by Particle Induced X-ray Emission analyses. The geochemistry of dust from the last glacial maximum (LGM) and from the Holocene is discussed in terms of past environmental changes, throughout the last climatic cycle. Antarctic dust from glacial and interglacial climate clearly reveals different geochemical compositions. The weathered crustal-like signature of LGM dust is characterized by a low compositional variability, suggesting a dominant source under the glacial regime. The close correspondence between the major element composition of Antarctic glacial dust and the composition of southern South American sediments supports the hypothesis of a dominant role of this area as major dust supplier during cold conditions. Conversely, the major element composition of Holocene dust displays high variability and high Al content on average. This implies that an additional source could also play some role. Comparison with size-selected sediments suggests that a contribution from Australia is likely during warm times, when a reduced glacial erosion decreases the primary dust production and a more intense hydrological cycle and larger vegetation cover inactivates dust mobility in a large part of southern South America, weakening its contribution as a massive dust supplier to Antarctica.
- Published
- 2008
- Full Text
- View/download PDF
21. A late-glacial high resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica)
- Author
-
Olivier Cattani, Jean Jouzel, Barbara Stenni, Roland Souchez, Emiliano Castellano, Valérie Masson-Delmotte, Enricomaria Selmo, Antonio Longinelli, Regine Röthlisberger, S. Falourd, Jørgen Peder Steffensen, Sigfus J Johnsen, Roberto Udisti, Julian P. Sachs, Stenni, Barbara, Jouzel, J., Masson Delmotte, V., Röthlisberger, R., Castellano, E., Cattani, O., Falourd, S., Johnsen, S. J., Longinelli, A., Sachs, J. P., Selmo, E., Souchez, R., Steffensen, J. P., Udisti, R., Department of Geological, Environmental and Marine Sciences [Trieste], Università degli studi di Trieste, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), University of Parma = Università degli studi di Parma [Parme, Italie], Massachusetts Institute of Technology (MIT), Université libre de Bruxelles (ULB), Università degli studi di Trieste = University of Trieste, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze = University of Florence (UniFI), University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), and Università degli studi di Parma = University of Parma (UNIPR)
- Subjects
deuterium excess ,deuterium ,ice cores ,site temperature ,source temperature ,East Antarctica ,010504 meteorology & atmospheric sciences ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Ice core ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,deuterium exce ,14. Life underwater ,Glacial period ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Temperature record ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Stable isotope ratio ,Last Glacial Maximum ,Sea surface temperature ,Temperature gradient ,Geophysics ,Settore GEO/08 - Geochimica e Vulcanologia ,13. Climate action ,Space and Planetary Science ,Climatology ,Seawater ,ice core ,Geology - Abstract
The timing and synchronisation of Greenland and Antarctic climate events that occurred during the last glacial period are still under debate, as is the magnitude of temperature change associated with these events. Here we present detailed records of local and moisture-source temperature changes spanning the period 27-45 kyr BP from water stable isotope measurements (deltaD and delta(18)O) in the recently drilled EPICA Dome C ice core, East Antarctic plateau. Using a simple isotopic model, site (DeltaT(site)) and source (DeltaT(source)) temperatures are extracted from the initial 50-yr high-resolution isotopic records, taking into account the changes in seawater isotopic composition. The deuterium isotope variability is very similar to the less precise deltaD record from the Vostok ice core, and the site temperature inversion leads to a temperature profile similar to the classical palaeothermometry method, due to compensations between source and ocean water corrections. The reconstructed DeltaT(site) and DeltaT(source) profiles show different trends during the glacial: the former shows a decreasing trend from the warm Al event (38 kyr BP) toward the Last Glacial Maximum, while the latter shows increasing values from 41 to 28 kyr BP. The low-frequency deuterium excess fluctuations are strongly influenced by obliquity fluctuations, controlling the low- to high-latitude temperature gradients, and show a remarkable similarity with a high-resolution southeast Atlantic sea surface temperature record. A comparison of the temperature profiles (site and source) and temperature gradient (DeltaT(source)-DeltaT(site)) with the non-sea-salt calcium and sodium records suggests a secondary influence of atmospheric transport changes on aerosol variations.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.