1. Troglitazone prevents hyperglycemia-induced but not glucosamine-induced insulin resistance.
- Author
-
Miles PD, Higo K, Romeo OM, Lee MK, Rafaat K, and Olefsky JM
- Subjects
- Administration, Oral, Animals, Blood Glucose analysis, Chromans administration & dosage, Cohort Studies, Glucosamine administration & dosage, Glucose Clamp Technique, Hormone Antagonists administration & dosage, Hypoglycemic Agents administration & dosage, Infusion Pumps, Male, Rats, Rats, Sprague-Dawley, Somatostatin administration & dosage, Thiazoles administration & dosage, Troglitazone, Blood Glucose drug effects, Chromans pharmacology, Hypoglycemic Agents pharmacology, Insulin Resistance physiology, Thiazoles pharmacology, Thiazolidinediones
- Abstract
Hyperglycemia can lead directly to a secondary state of insulin resistance or can worsen a preexisting insulin-resistant state. Troglitazone is an orally active hypoglycemic agent that has been shown to ameliorate insulin resistance and hyperinsulinemia in both diabetic animal models and NIDDM subjects. To determine whether this drug could prevent the development of hyperglycemia-induced insulin resistance and to investigate the mechanism by which this might occur, we studied troglitazone's effect on insulin action in rats made hyperglycemic or infused with glucosamine. Normal male SD rats were fed regular powdered diet with or without troglitazone as a food admixture (0.2%). After 2 weeks, rats were made hyperglycemic with glucose (52 mg x kg(-1) x min[-1]) and somatostatin (0.8 microg x kg(-1) x min[-1]) infusion or were infused with glucosamine (6.5 mg x kg(-1) x min[-1]) for 6.5 h. In vivo insulin action was measured by the hyperinsulinemic-euglycemic clamp technique at a submaximal (24 pmol x kg(-1) x min[-1]) or maximal (240 pmol x kg(-1) x min[-1]) insulin infusion rate. The infusion of glucose and somatostatin caused a pronounced rise in the plasma glucose concentration (19.8 +/- 0.6 mmol/l) compared with saline-infused animals (8.0 +/- 0.2 mmol/l; P < 0.001). Hyperglycemia resulted in insulin resistance, as evidenced by a marked reduction in the submaximal glucose disposal rate (GDR) (78 +/- 7 vs. 135 +/- 6 micromol x kg(-1) x min(-1); P < 0.01) and maximal GDR (141 +/- 9 vs. 237 +/- 6 micromol x kg(-1) x min(-1); P < 0.01) compared with the control group. Troglitazone treatment largely prevented the hyperglycemia-induced decline in submaximal (116 +/- 7 micromol x kg(-1) x min[-1]) and maximal GDR (209 +/- 9 micromol x kg(-1) x min(-1); P < 0.05). Glucosamine infusion also resulted in a marked reduction in the submaximal GDR (85 +/- 3 vs. 135 +/- 6 micromol x kg(-1) x min(-1); P < 0.01) and maximal GDR (137 +/- 14 vs. 237 +/- 6 micromol x kg(-1) x min(-1); P < 0.01) compared with the control group. In contrast to the results in the hyperglycemic animals, troglitazone treatment had no effect on glucosamine-induced insulin resistance. In summary, 1) in normal rats, experimental hyperglycemia, as well as glucosamine infusion, led to a marked state of peripheral and hepatic insulin resistance; 2) troglitazone treatment prevented the hyperglycemia-induced, but not the glucosamine-induced, insulin resistance; and 3) either troglitazone acts at one or more sites proximal to the entry of glucosamine into the hexosamine pathway, or the increased flux of glucose-derived products through the hexosamine pathway is not a major mechanism for the hyperglycemia-induced defect in insulin action in these animals. more...
- Published
- 1998
- Full Text
- View/download PDF