1. Análise derivativa de dados hiperespectrais medidos em nível de campo e orbital para caracterizar a composição de águas opticamente complexas na Amazônia Derivative analysis of hyperespectral data measured at field and orbital level to characterize the composition of optically complex waters in the amazon
- Author
-
Conrado M. Rudorff, Evlyn M. L. M. Novo, Lênio S. Galvão, and Waterloo Pereira Filho
- Subjects
Sensoriamento remoto hiperespectral ,primeira derivada ,constituintes opticamente ativos ,Hyperion ,Amazônia ,Hyperspectral remote sensing ,first derivative ,optically active constituents ,Amazon ,Science (General) ,Q1-390 - Abstract
A técnica de análise derivativa de dados espectrais foi usada para estudar a variação dos constituintes opticamente ativos (COAs) na água, por meio de dados de campo e de imagens do sensor orbital Hyperion/EO-1. A imagem Hyperion usada neste estudo foi adquirida no dia 23 de junho de 2005, no final do período de cheia. Uma campanha de campo foi realizada entre 23 e 29 de junho de 2005, para coletar dados espectrais e limnológicos in situ. A imagem foi pré-processada visando eliminar faixas de pixels anômalos e convertida de valores de radiância para reflectância de superfície, portanto, corrigidos dos efeitos de absorção e espalhamento atmosféricos. Uma análise da correlação foi realizada para examinar a associação da reflectância e de sua primeira derivada espectral com as concentrações dos COAs. Melhores resultados foram obtidos após a diferenciação dos espectros, o que ajudou a reduzir a influência de efeitos indesejáveis, provindos de diferentes fontes de radiância, sobre as medidas de reflectância da superfície da água realizadas em ambos os níveis de aquisição de dados. Por meio de ajustes de regressões empíricas, considerando o conjunto de dados Hyperion, a primeira derivada espectral em 711 nm explicou 86% da variação da concentração de sedimentos inorgânicos em suspensão (µg.l-1) e a primeira derivada espectral em 691 nm explicou 73% da variação na concentração da clorofila-alfa (µg.l-1). As relações de regressão foram não-lineares, pois, em geral, as águas que se misturam na planície de inundação Amazônica se tornam opticamente complexas. A técnica de análise derivativa hiperespectral demonstrou potenciais para mapear a composição dessas águas.Derivative analysis of spectral data was used as a technique to study the variation of optically active constituents (OACs) of water, using field data and hyperspectral imagery of EO-1 Hyperion orbital sensor. The Hyperion image used in this study was acquired on June 23, 2005, at the end of the high water period for the Amazon River. A field campaign was carried out between June 23 and 29, 2005 to collect spectral and limnological in situ data. The image was pre-processed to remove stripes of abnormal pixels and converted from radiance to surface reflectance values, thus, correcting the effects of atmospheric absorption and scattering. A correlation analysis was carried out to examine the association of the spectral reflectance and its first derivative to the concentrations of OACs. Better results were obtained after spectra differentiation, which helped to reduce the influence of undesirable effects, coming from different sources of radiance, on the measurements of water surface reflectance taken at both data acquisition levels. Through empirical regression fits, considering the Hyperion dataset, the first spectral derivative at 711 nm explained 86% of the variation of suspended inorganic sediment concentration (µg.l-1), and the first derivative at 691 nm explained 73% of the variation of chlorophyll-a concentration (µg.l-1). The regression relations were nonlinear because, generally, the water masses that mix in the Amazon floodplain become optically complex. The hyperspectral derivative analysis demonstrated potential for mapping the composition of these waters.
- Published
- 2007
- Full Text
- View/download PDF