1. Novel Pyridine-Based Hydroxamates and 2'-Aminoanilides as Histone Deacetylase Inhibitors: Biochemical Profile and Anticancer Activity.
- Author
-
Zwergel C, Di Bello E, Fioravanti R, Conte M, Nebbioso A, Mazzone R, Brosch G, Mercurio C, Varasi M, Altucci L, Valente S, and Mai A
- Subjects
- Anilides chemical synthesis, Anilides chemistry, Antineoplastic Agents chemical synthesis, Antineoplastic Agents chemistry, Cell Proliferation drug effects, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Histone Deacetylase Inhibitors chemical synthesis, Histone Deacetylase Inhibitors chemistry, Humans, Hydroxamic Acids chemical synthesis, Hydroxamic Acids chemistry, Isoenzymes antagonists & inhibitors, Isoenzymes metabolism, Molecular Structure, Pyridines chemistry, Recombinant Proteins metabolism, Structure-Activity Relationship, Tumor Cells, Cultured, Anilides pharmacology, Antineoplastic Agents pharmacology, Histone Deacetylase Inhibitors pharmacology, Histone Deacetylases metabolism, Hydroxamic Acids pharmacology, Pyridines pharmacology
- Abstract
Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide (5 b) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6-8, 9 b, as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide (9 b) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9 a, 9 c-f, and 11 a-f) and 2'-aminoanilides (10 a-f and 12 a-f), related to 9 b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11 d displayed sub-nanomolar potency (IC
50 : 0.5 nM) and selectivity up to 34 000 times that of HDAC4 and from 100 to 1300 times that of all the other tested HDAC isoforms. The 2'-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12 d being the most effective (IC50 HDAC3 =0.113 μM). When tested in U937 leukemia cells, the hydroxamates 9 e, 11 c, and 11 d blocked over 80 % of cells in G2/M phase, whereas the anilides did not alter cell-cycle progress. In the same cell line, the hydroxamate 11 c and the anilide 10 b induced about 30 % apoptosis, and the anilide 12 c displayed about 40 % cytodifferentiation. Finally, the most potent compounds in leukemia cells 9 b, 11 c, 10 b, 10 e, and 12 c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level., (© 2020 Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF