ISI Document Delivery No.: AG8ZH Times Cited: 0 Cited Reference Count: 50 Cited References: Andersen OB, 2010, IAG SYMP, V135, P521, DOI 10.1007/978-3-642-10634-7_69 Bartsch A., 2007, P ENV S 2007 MONTR S Bartsch A, 2007, REMOTE SENS ENVIRON, V106, P360, DOI 10.1016/j.rse.2006.09.004 Becker M, 2010, CR GEOSCI, V342, P223, DOI 10.1016/j.crte.2009.12.010 Berry PAM, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL022814 Birkett CM, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD000609 Birkett CM, 1998, WATER RESOUR RES, V34, P1223, DOI 10.1029/98WR00124 Birkett CM, 2010, MAR GEOD, V33, P204, DOI 10.1080/01490419.2010.488983 Birkinshaw SJ, 2010, HYDROL PROCESS, V24, P3811, DOI 10.1002/hyp.7811 Cretaux JF, 2006, CR GEOSCI, V338, P1098, DOI 10.1016/j.crte.2006.08.002 Decharme B, 2012, CLIM DYNAM, V38, P1389, DOI 10.1007/s00382-011-1054-9 Frappart F, 2010, HYDROL EARTH SYST SC, V14, P2443, DOI 10.5194/hess-14-2443-2010 Frappart F, 2006, REMOTE SENS ENVIRON, V100, P252, DOI 10.1016/j.rse.2005.10.027 Frappart F, 2005, REMOTE SENS ENVIRON, V99, P387, DOI 10.1016/j.rse.2005.08.016 Frappart F, 2006, GEOPHYS J INT, V167, P570, DOI 10.1111/j.1365-246X.2006.03184.x Fu L.-L., 2012, WIDE SWATH ALTIMETRI Ivanov E.K., 1976, BOGS W SIBERIA THEIR Ivanov K.E., 1975, WATER EXCHANGE BOG L Kellner E, 2002, HYDROL PROCESS, V16, P87, DOI 10.1002/hyp.286 Kirpotin S., 2008, International Journal of Environmental Studies, V65, P631, DOI 10.1080/00207230802525208 Kirpotin Sergey N., 2009, International Journal of Environmental Studies, V66, P409, DOI 10.1080/00207230902753056 Kondratyev K.A., 1981, MERZLOTOVEDINYE, P240 Kotlyakov V.M., 1997, WORLD ATLAS SNOW ICE, P264 Kouraev AV, 2004, IEEE T GEOSCI REMOTE, V42, P2170, DOI 10.1109/TGRS.2004.835307 Kouraev AV, 2004, REMOTE SENS ENVIRON, V93, P238, DOI 10.1016/j.rse.2004.07.007 Kouraev AV, 2008, SURV GEOPHYS, V29, P271, DOI 10.1007/s10712-008-9042-2 Kouraev AV, 2003, POLAR RES, V22, P43, DOI 10.1111/j.1751-8369.2003.tb00094.x Kouraev AV, 2007, REMOTE SENS ENVIRON, V108, P240, DOI 10.1016/j.rse.2006.11.010 Kouraev A.V., 2007, AR SEAS INT C SCI TE Kouraev AV, 2009, J MARINE SYST, V76, P272, DOI 10.1016/j.jmarsys.2008.03.016 Kouraev AV, 2007, LIMNOL OCEANOGR, V52, P1268 Kremenetski KV, 2003, QUATERNARY SCI REV, V22, P703, DOI 10.1016/S0277-3791(02)00196-8 Lee H, 2011, TERR ATMOS OCEAN SCI, V22, P169, DOI 10.3319/TAO.2010.08.09.01(TibXS) Lee H, 2010, INT J REMOTE SENS, V31, P3931, DOI 10.1080/01431161.2010.483494 Legresy B, 1997, J GLACIOL, V43, P265 Legresy B, 2005, REMOTE SENS ENVIRON, V95, P150, DOI 10.1016/j.rse.2004.11.018 Lehner B, 2004, J HYDROL, V296, P1, DOI 10.1016/j.jhydrol.2004.03.028 Papa F, 2007, J GEOPHYS RES-ATMOS, V112, DOI 10.1029/2007JD008451 Papa F, 2006, INT J REMOTE SENS, V27, P4847, DOI 10.1080/01431160600675887 Pathe C, 2009, IEEE T GEOSCI REMOTE, V47, P468, DOI 10.1109/TGRS.2008.2004711 Pereira-Cardenal SJ, 2011, HYDROL EARTH SYST SC, V15, P241, DOI 10.5194/hess-15-241-2011 Popov A.I., 1989, REGIONAL CRYOLYTHOLO, P255 Smith LC, 2012, PERMAFROST PERIGLAC, V23, P69, DOI 10.1002/ppp.735 Sokolov A.A., 1952, HYDROGRAPHY USSR GID Troitskaja Yu, INLAND WATER ALTIMET Ulaby F.T., 1986, MICROWAVE REMOTE SEN, VIII, P1065 Vodogretskiy V.E., 1973, RESOURCES SURFACE WA, V15, P1098 Zakharova EA, 2011, J HYDROMETEOROL, V12, P1498, DOI 10.1175/JHM-D-11-017.1 Zakharova E. A., 2009, International Journal of Environmental Studies, V66, P447, DOI 10.1080/00207230902823578 Zakharova E.A., 2007, 2 SPAC HYDR WORKSH S Zakharova, Elena A. Kouraev, Alexei V. Remy, Frederique Zemtsov, Valeri A. Kirpotin, Sergey N. 0 ELSEVIER SCIENCE BV AMSTERDAM J HYDROL; Boreal wetlands play an important role in the global water and carbon cycle but their water regime is far from being well understood. The aim of this paper is to study wetland hydrological regime over the 21 mid-size watersheds of the Western Siberia - one of the most bogged regions of the world. By using ENVISAT RA-2 radar altimetry data we analyze seasonal variability of wet zones extent, water level and storage in wetlands. We have identified three main types of wetland water regime characterized by: (1) spring inundation and following deep drainage with/without secondary peak in autumn; (2) spring inundation and low summer variation; (3) spring inundation with medium summer drainage and second autumnal peak. Our estimates show that the floodplain inundation contributes less than 8% to the total wet zones extent. Analysis of the timing of melt and freeze onset and other specific phases of hydrological regime has been done. It was found that the spring inundation lasts for almost 2 months with a latitudinal gradient of melt onset of 8 days/2. No considerable latitudinal gradient has been found for dates of full freeze onset. Our results show that seasonal amplitude of water level variation for northern part of Western Siberia from altimetry is 0.7-1.5 m for lakes and 0.2-0.5 m for bogs. This represents seasonal variation of wetland water storage of 480 mm for non-permafrost and 130 mm for permafrost-affected zones. (c) 2014 Elsevier B.V. All rights reserved.