Alexander I. Kostyuk, Maria-Armineh Tossounian, Anastasiya S. Panova, Marion Thauvin, Roman I. Raevskii, Daria Ezeriņa, Khadija Wahni, Inge Van Molle, Anastasia D. Sergeeva, Didier Vertommen, Andrey Yu. Gorokhovatsky, Mikhail S. Baranov, Sophie Vriz, Joris Messens, Dmitry S. Bilan, Vsevolod V. Belousov, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (IBCh RAS), Russian Academy of Sciences [Moscow] (RAS), Pirogov Russian National Reasearch Medical University Moscow, Vrije Universiteit Brussel (VUB), Vlaams Instituut voor Biotechnologie [Ghent, Belgique] (VIB), University College of London [London] (UCL), Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Collège Doctoral, Sorbonne Université (SU), Lomonosov Moscow State University (MSU), Université Catholique de Louvain = Catholic University of Louvain (UCL), Laboratoire des biomolécules (LBM UMR 7203), Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département de Chimie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), HAL-SU, Gestionnaire, Faculty of Sciences and Bioengineering Sciences, Department of Bio-engineering Sciences, and Structural Biology Brussels
The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M−1s−1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model., There are a lack of tools to study the dynamics of (pseudo)hypohalous acids in live cells. Here the authors report a genetically encoded fluorescent biosensor, Hypocrates, for (pseudo)hypohalous acids and their derivatives which they use in cells and in a zebrafish tail fin injury model.